Carbothermic Reduction of Alumina
A Study & A Progress Report

Valerie Gervais
MIME572: Computational Thermodynamics
McGill University, Winter 2013
Table of Contents

1. Hall-Héroult Process
 - 1.1 moving toward sustainable alternatives

2. Basics of the Carbothermal Reduction of Alumina
 - 2.1 Database selection
 - 2.2 General Carbothermic Equation
 - 2.3 Thermodynamic analysis

3. Two-stage Reactor
 - 3.1 Slag Production Stage
 - 3.2 Alloy Formation Stage
 - 3.3 Al₂O₃ - Al₄C₃ Phase Diagram
 - 3.4 Summary of the Reactor Analysis

4. Flux Components
 - 4.1 Effect of each component on the process
 - 4.2 Effect of adding combinations of flux
 - 4.3 Summary of the Flux Analysis

5. Effect of Oxygen Content on Al yield
 - 5.1 A previous study on effect of oxygen
 - 5.2 Variations in oxygen content reacting

6. References
Table of Figures

- **Figure 1.** Carbothermic Equation $\text{Al}_2\text{O}_3 + 3\text{C} \rightarrow 2\text{Al} + 3\text{CO}$. Change in Gibbs Free Energy as a function of temperature
- **Figure 2.** Distribution of Aluminum content at equilibrium vs. temperature for an input of $\text{Al}_2\text{O}_3 + 3\text{C}$
- **Figure 3.** Two stage Reactor by Cochran. Patent issued in 1981.
- **Figure 4.** Flow Chart of Advanced Reactor Process with focus on the upper reactor stage [5]
- **Figure 5.** Stable phases created by $3\text{Al}_2\text{O}_3 + 9\text{C}$ as a function of equilibrium temperature.
- **Figure 6.** Molar amount of each species in the slag phase as a function of temperature
- **Figure 7.** Flow Chart of Advanced Reactor Process with focus on the lower reactor stage [5]
- **Figure 8.** Aluminum yield as a function of mole Fraction of Al_4C_3 in the slag
- **Figure 9.** Aluminum yield as a function of the operating temperature of the lower reactor
- **Figure 10.** $\text{Al}_4\text{C}_3-\text{Al}_2\text{O}_3$ phase diagram with focus on phases present for 0.5 mol fraction
- **Figure 11.** Schematic of the addition of Flux in the two stage reactor
- **Figure 12.** $\text{Al}_4\text{C}_3-\text{Al}_2\text{O}_3$ Phase Diagram including 20% MgO
- **Figure 13.** Stable phases present + Al (liqu) as a function of Temperature with 20% MgO addition
- **Figure 14.** $\text{Al}_4\text{C}_3-\text{Al}_2\text{O}_3$ Phase Diagram including 20% CaO
- **Figure 15.** Stable phases present + Al (liqu) as a function of Temperature with 20% CaO addition
- **Figure 16.** Aluminum yield as a function of the number of moles of oxygen present.
1. Hall-Héraoult Process

Electrolytic reduction of alumina

→ Currently the only industrial process for the production of Aluminum

- The Aluminum Industry is the primary source of industrial energy consumption, consuming about 1% of the total electric energy produced globally.

- The Hall-Héraoult process is the most energy consuming stage in aluminum production, while also being highly expensive and only economically feasible in large scale production.

- The Hall-Héraoult process is also a CO\textsubscript{2} intensive process and is known to be responsible for producing 2.5% of the world’s anthropogenetic Greenhouse gas emissions.

Alumina (Al\textsubscript{2}O\textsubscript{3}) is dissolved in molten salt (cryolite) by direct current electrolysis during which CO\textsubscript{2} is released at the carbon anode and Al is recovered at the bottom of the cell.

Based on 2011 data [1]
1.1 Moving towards Sustainable Alternatives

- **Carbothermic Reduction of Alumina**
 Has been suggested and studied by many researchers in the last 50 years.

Based on 2011 documentation, the implementation of such a process would reduce energy consumption by 21% and would reduce Greenhouse gas emissions by up to 52%. [1]
2. Basics of Carbothermic Reduction of Alumina

2.1 DATABASE SELECTION

Development of thermodynamic data
KEY: Understanding the thermodynamics of the Al2O3-Al4C3 slag system and the Al-C liquid metal [2]
- Gibbs free energies
- Activities

NEW DATABASE in FactSage: FACT FTOxCB
- Developed for performing equilibrium calculations in the Al-(Si-Ca-Mg-Fe)-C-O-N System at very high temperatures

Project Database selection: FTOxCB & FactPS for gaseous products
* The addition of a very small amount of argon (10E-4 mol) is sometimes required for convergence of PhaseDiagram and Equilb module calculations. [3]
2.2 Carbothermic Reduction of Alumina

General equation:

\[\text{Al}_2\text{O}_3 + 3\text{C} = 2\text{Al} + 3\text{CO} \]

As shown on the right, utilizing the reaction module, this reaction is thermodynamically favorable at high temperatures. However, it occurs simultaneously with other reactions which complicate the direct reduction process.

The direct reduction of alumina using carbon suffers from critical issues such as

- Aluminum carbide and oxycarbide formation, and
- Aluminum vaporization

These reduce the aluminum yield considerably. Visual demonstration using FactSage on the next slide.
2.3 Thermodynamic analysis

For a system initially containing 1 mole of alumina and 3 moles of carbon, the following displays the molar variations in the species containing Aluminum at equilibrium for a range of temperatures.

Important Factors:

For $1940^\circ C < T < 2050^\circ C$, aluminum is mainly in the slag phase (red & blue).

For $2020^\circ C < T < 2160^\circ C$, Al_4C_3 carbides are stable outside of the slag phase (pink).

For $2080^\circ C < T < 2330^\circ C$, Aluminum liquid alloy is stable (green).

At $T = 2160^\circ C$, maximum aluminum yield is reached.

Near max. yield T, a significant amount of Al is lost to $\text{Al}_1(g)$ (gray) or $\text{Al}_2\text{O}_3(g)$ (teal).

Note that the molar variations of CO(g), CO2(g) and C(s) along with all other species present at negligible content have been omitted from this graph.

Figure 2. Distribution of Aluminum content at equilibrium for an input of $\text{Al}_2\text{O}_3 + 3\text{C}$
Primary R&D Goal: Increase Aluminum yield and reduction process efficiency by reducing losses to carbides or aluminum vaporization.

3. Two Stage Reactor

Overall process [4]

Stage 1: Slag Production

Upper reaction zone

\[3\text{Al}_2\text{O}_3 + 9\text{C} \rightarrow (\text{Al}_4\text{C}_3.\text{Al}_2\text{O}_3)_{\text{slag}} + 6\text{CO} \]

Stage 2: Alloy Formation

Lower reaction zone

\[(\text{Al}_4\text{C}_3.\text{Al}_2\text{O}_3)_{\text{slag}} \rightarrow 6\text{ Al}_{\text{alloy}} + 3\text{CO} \]

(At higher temperature than stage 1)

A grate or screen (13) separates the upper and lower reaction zones in the reactor, allowing only liquid phases to pass through to stage 2. Most of the carbon dioxide gas is produced in the first stage and ejected through the top preventing interference with alloy formation in the lower stage.

Figure 3. Two stage Reactor by Cochran. Demonstration of upper reaction zone (stage 1) and lower reaction zone (stage 2). [4]
Since the issue of this patent, most of the research done by Alcan and Alcoa has revolved around Cochran’s idea. [1]

Latest development in relation to this process has been done through the collaboration of Alcoa and Elkem who developed the Advanced Reactor Process ARP, a flow chart of which is shown in Figure 4. This process resolves previous issues such as

→ heat supply
→ slag transfer
→ vapour losses through the addition of a Vapour Recovery Reactor [1]

3.1 Slag production stage
(Upper reaction zone; stage 1)

\[3\text{Al}_2\text{O}_3 + 9\text{C} \rightarrow (\text{Al}_4\text{C}_3.\text{Al}_2\text{O}_3)_{\text{slag}} + 6\text{CO} \]

Key factor: \(\text{Al}_2\text{O}_3 \) and \(\text{Al}_4\text{C}_3 \) can either be produced as separate phases or as a slag phase. As shown previously in Figure 2, this is dependent upon the **temperature** at which the reactor is operated.

Next>> Determining the optimal temperature for slag production

Figure 4. Flow Chart of Advanced Reactor Process with focus on the upper reactor stage [5]
Slag Production Stage: Upper Reaction Zone

$$3\text{Al}_2\text{O}_3 + 9\text{C} \rightarrow (\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_{\text{slag}} + 6\text{CO}$$

Temperature range for slag production

<table>
<thead>
<tr>
<th>Phase Species</th>
<th>Gas: CO, Al, Al$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slag#1: Al$_2$O$_3$, Al$_4$C$_3$</td>
<td></td>
</tr>
<tr>
<td>AlC#1: Al$_4$C$_3$(s)</td>
<td></td>
</tr>
<tr>
<td>Liq#1: Al-C alloy</td>
<td></td>
</tr>
</tbody>
</table>

Stable Slag Temperature range
1907–2049°C
but 1907-1948°C has ≈1E-5 moles
Best estimate: 1948-2049°C

Figure 5. Stable phases created by $3\text{Al}_2\text{O}_3 + 9\text{C}$ as a function of equilibrium temperature.
Slag Production Stage: Upper Reaction Zone

\[3\text{Al}_2\text{O}_3 + 9\text{C} \rightarrow (\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_{\text{slag}} + 6\text{CO} \]

Temperature range for slag production

Concluding Note: An operating temperature of 2000°C is chosen as optimum temperature. This value will be used for further calculations based on the slag production stage (upper reaction zone).

Figure 6. Molar amount of each species in the slag phase as a function of temperature

Zooming in on the stable slag temperature range:

In Figure 6, the components of the slag phase are displayed based on their mole content in relation to the total mole content of the slag phase (red).

Stage 1 slag production is concerned with creating a slag phase without the production of \(\text{Al}_4\text{C}_3 \) carbides out of phase and with minimum aluminum vaporization.

From previous analysis, Figure 2, showed that \(\text{Al}_4\text{C}_3 \) carbides become stable at \(T=2020°C \) therefore this temperature must be avoided. Furthermore, aluminum vapours increase with temperature for the slag temperature range.

Finally, a relevant amount of \(\text{Al}_4\text{C}_3 \) in the slag phase is required for an efficient carbothermic reduction. (this will be shown later)
3.2 Alloy Formation Stage
(Lower reaction zone; stage 2)

\[(\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_{\text{slag}} \rightarrow 6 \text{ Al}_{\text{alloy}} + 3\text{CO}\]

The operating temperature of the Slag Production Stage has been determined as 2000°C. This is lower than the temperature proposed in Cochran’s patent in 1981 (2050°C).

Next we consider the lower reactor stage which receives the slag produced in the upper reactor region. The lower reactors is known to operate at a higher temperature than that above it and so it heats up the slag to produce the aluminum alloy.

The aluminum alloy yield from slag is the primary focus of the entire carbothermic reduction process. As shown before, aluminum content can be lost to either aluminum carbides or aluminum vapours.

Next>> Determining the most efficient molar slag ratio

Figure 7. Flow Chart of Advanced Reactor Process with focus on the lower reactor stage [5]
Alloy Formation Stage: Lower Reaction Zone

\[(\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_{\text{slag}} \rightarrow 6\text{Al}_{\text{alloy}} + 3\text{CO} \text{ @2100°C (patent temperature)}\]

Optimization of Al-C Yield from \(\text{Al}_4\text{C}_3/\text{Al}_2\text{O}_3\) Ratio

On right, Figure 8. shows the stable phases present at equilibrium for \(T= 2100°C\), based on the mole fraction of \(\text{Al}_4\text{C}_3\) initially present in the slag phase. This temperature was chosen for optimization because it is the temperature chosen by Cochran in 1981. (It will be shown later that this approximation gives the correct result)

Phase Species

Gas: CO, Al, Al\(_2\)O

Slag#1: Al\(_2\)O\(_3\), Al\(_4\)C\(_3\)

AIC#1: Al\(_4\)C\(_3\)(s)

Liq#1: Al-C alloy

![Figure 8. Aluminum yield as a function of mole Fraction of Al\(_4\)C\(_3\) in the slag](image)
Alloy Formation Stage: Lower Reaction Zone

$(\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_\text{slag} \rightarrow 6\ \text{Al}_{\text{alloy}} + 3\text{CO} @2100^\circ\text{C}$ (patent temperature)

Optimization of Al-C Yield from $\text{Al}_4\text{C}_3/\text{Al}_2\text{O}_3$ Ratio

- Al-C alloy yield is maximum when the slag in the lower reaction region has a nearly equi-molar concentration of Al_4C_3 and Al_2O_3.

- The formation of carbides $\text{Al}_4\text{C}_3(s)$ separate from liquid phases occurs when the mole fraction of Al_4C_3 is, $X_{\text{Al}_4\text{C}_3} \leq 0.53$.

Concluding Note: A slag ratio of 1:1 is chosen. For further calculations involving the slag phase, a mole ratio of $0.5\text{Al}_2\text{O}_3-0.5\text{Al}_4\text{C}_3$ will be used.

Not that the slag produced in the upper reactor and through to the lower stage does not have this equimolar ratio. Therefore, additional carbon must be added to the lower reactor to meet the required stoichiometry.

Next>> Determining the operating temperature in the lower reactor
Using the optimized slag composition, the temperature at which the lower reaction stage must be operated is determined.

Figure 9 shows the variation in the number of moles of Aluminum (liqu#1) produced as a function of the reactor temperature.

Graphed Species & Phases
- Displayed are both the entire Liquid phase (Liqu#1) and the Aluminum portion of that Al(liqu#1).
- The Gas phase (GAS) is displayed as well as the aluminum vapour portions of it (Al₂O, Al)

Note: The graph agrees with the 1981 patent where the second stage was performed at 2100°C since this is within the approximate optimum range: 2055-2125°C.
Alloy Production Stage: Lower Reaction Zone

\((\text{Al}_4\text{C}_3\cdot\text{Al}_2\text{O}_3)_\text{slag} \rightarrow 6\ \text{Al}_{\text{alloy}} + 3\text{CO}\)

Temperature Range for Highest Aluminum Yield from Slag

The aluminum yield is measured based on the input number of moles vs the output number of moles of Al in the liquid metal. An optimum temperature of 2070°C was chosen for the lower reactor region.

At this temperature, the Al yield is 75%.

Concluding Note: For further calculations based on the alloy formation stage (lower reaction zone), an operating temperature of 2070°C will be used.

Figure 9. Aluminum yield as a function of the operating temperature of the lower reactor.
3.3 Phase Diagram: Al_4C_3-Al_2O_3

Validating that all assumptions and conclusions collide together and form a viable process.

For a 0.5 mol fraction, we can see that the slag phase begins to form at $T=1999^\circ\text{C}$.

We can also see that beyond $T=2055$, the slag phase is completely converted to Liquid (Al-C alloy) and gas.

\rightarrow This supports the operating temperature of 2000°C that was determined for the first stage.

\rightarrow It also confirms the temperature obtained for the second stage 2070°C.

Figure 10. Al_4C_3-Al_2O_3 phase diagram with focus on phases present for 0.5 mol fraction
Summary

→ A thermodynamic evaluation of the basic carbothermic reduction of alumina showed aluminum content losses to the formation of carbides or that of vapours.
→ The development of a two stage process by Cochran et al. was presented in which aluminum vaporization is avoided in the first stage and carbide formation is unstable in the second.
→ The evaluation of Stage 1: slag production resulted in an optimal temperature of 2000°C.
→ A study on the optimum molar ratio of slag demonstrated that a 0.5Al_2O_3-0.5Al_4C_3 mole ratio gives the maximum Aluminum metal output, explaining the charge mole ratio of 1 moles of Al_2O_3 to 3 moles of C in the theoretical carbothermic equation.
→ Finally, the evaluation of Stage 2: aluminum alloy formation set the operating temperature at 2070°C.
Flux Addition

In industry, Flux is often added to help in the smelting process. Here, will we study the effect of the addition of CaO, MgO and SiO₂ in alumina carbothermic reduction.

Objective: Determine the optimum flux composition to obtain the lowest possible melting temperature forming the $\text{Al}_2\text{O}_3 - \text{Al}_4\text{C}_3$ Slag and increasing the Aluminum yield.

![Figure 11. Schematic of the addition of Flux in the two stage reactor](image-url)
4. Flux Composition

CaO-MgO-SiO₂

Determination of the best flux composition to lower operating temperatures and increase aluminum yield.

<\textbf{a}>CaO, <\textbf{b}>MgO, <\textbf{c}> SiO₂

The total flux charge in the upper reactor zone is approximated at 20% of the total charge. Therefore, \(a + b + c = 0.20 \) moles

\textbf{INPUT:}

\(\text{Al}_2\text{O}_3 = 0.4 \) moles

\(\text{Al}_4\text{C}_3 = 0.4 \) moles

& Argon gas is added at 0.0001mol for convergence of the phase diagram and equilb modules

- Determine the effect of each slag component individually
- Observe the combined effect of two components at a time and determined the most adequate molar ratio between the two
- Analyze the data to determine what ratios increase the aluminum yield and decrease the operating temperatures.
4.1. Effect of Each Component on the process

4.1.1 An example: MgO- Al₄C₃-Al₂O₃ system

Step by step demonstration of flux component effect on the temperature at which slag is formed, T_{slag}, the temperature at which liquid Al is formed, T_{liquid} and the Aluminum yield.

Input Species: Ar and MgO are constant

Phases selected with possible immiscibility gap

Select gases from FactPS and Pure Solids from FTOxCN
4.1. Effect of Each Component on the process

4.1.1 An example: MgO- Al₄C₃-Al₂O₃ system

Variable Selection

Vary Temperature from 1600 to 2400°C

Al₂O₃ and Al₄C₃ theoretically make up 100% of the composition according to this

0.24 moles of MgO represents 20% of the total.
Total: 100 + 120 = 120
0.20(120) = 24%
4.1.1 Effect of Each Component on the process; MgO example

Phase Diagram: MgO-Al$_4$C$_3$-Al$_2$O$_3$

The focus is on phase transformations at 0.5 mol/mol especially for the lower reactor variables T_{liquid} and A_{yield}. However, it can also be used to estimate change in T_{slag} for upper reactor.

- Specifically on the temperature at which the slag phase starts to have Al$_4$C$_3$
- Also on the temperature at which Al-liquid is formed at a relevant amount.

Figure 12. Al$_4$C$_3$-Al$_2$O$_3$ Phase Diagram including 20% MgO
At \(T = 1747 \), \(X = 0.5 \)
Some slag has formed with 4\% \(\text{Al}_4\text{C}_3 \)

At \(T = 1990 \), \(X = 0.5 \)
Some liquid has formed but in very small quantities

At \(T = 2025 \), \(X = 0.5 \)
Decent amounts of liquid start to form.
4.1.1 Effect of Each Component on the process; MgO example
Using the Equilb Module to determine Al yield

The slag seems to form at relatively low temperatures but as shown in the last slide, Slag formation with \(\text{Al}_4\text{C}_3 \) only occurs around 1740°C.

Furthermore, for an equimolar input of \(\text{Al}_4\text{C}_3 \) and \(\text{Al}_2\text{O}_3 \), this analysis is more relevant to the lower reactor stage.

Figure 13. shows that the liquid phase is initially produced around 1990°C. The Aluminum yield at 2070°C is 1.5337 moles for an input of 2.4 moles, therefore 63.9%.

Note: The addition of MgO gives an Al yield that is lower than the initial yield of 75%
4.1.2 Effect of Each Component on the process; CaO addition

4.1.2 Phase Diagram: CaO-Al_{4}C_{3}-Al_{2}O_{3}

The Phase Diagram gives a general idea of how the important variables T_{slag}, T_{liquid} and Al_{yield} change for the addition of a component. However the equilib method is much more adequate and will be used for further analysis.

Figure 14. Al_{4}C_{3}-Al_{2}O_{3} Phase Diagram including 20% CaO
4.1.2 Effect of Each Component on the process; CaO addition

Using the Equilb Module to determine T_{slag}, T_{liquid} and Al_{yield}

The slag containing Al_4C_3 forms at a relatively low temperature of 1655.3°C. This temperature is much lower than the original slag production temperature of 2000°C.

Figure 15. Stable phases present + Al (liqu) as a function of Temperature with 20% CaO addition
4.1.2 Effect of Each Component on the process; CaO addition

Using the Equilb Module to determine T_{slag}, T_{liquid} and Al_{yield}

Figure 15. also shows that the liquid phase is initially produced around 2085°C. This temperature is higher than the initial liquid alloy temperature of 2070°C.

Furthermore, the Aluminum yield at 2070°C is 0.000118 moles for an input of 2.4 moles, therefore 0%.

Note: the same procedure was used to determine the effect of SiO$_2$ addition. The following table displays the effect of each on the key variables.
4.1 Effect of Each Component on the process

4.1.3 Conclusions

Variables:

\(T_{\text{slag}} \) = Temperature at which slag is formed in the upper reactor

\(T_{\text{liquid}} \) = Temperature at which Al liquid alloy is formed in the lower reactor

\(\text{Al} \text{yield} @ 2070 \) = Mole percentage of Aluminum converted to the Aluminum liquid alloy at a lower reactor temperature of 2070°C

Max. \(\text{Al} \text{yield} @ T \) = Maximum aluminum yield at a given temperature in the lower reactor

Table 1. Effect of individual flux addition

<table>
<thead>
<tr>
<th>Added Component (20%)</th>
<th>(T_{\text{slag}}) (°C)</th>
<th>(T_{\text{liquid}}) (°C)</th>
<th>(\text{Al} \text{yield} @ 2070°C)</th>
<th>Max. (\text{Al} \text{yield} @ T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2000</td>
<td>2070</td>
<td>75%</td>
<td>--</td>
</tr>
<tr>
<td>MgO</td>
<td>1747.1</td>
<td>1990</td>
<td>63.9%</td>
<td>66.37% @ 2042.1</td>
</tr>
<tr>
<td>CaO</td>
<td>1655.3</td>
<td>2085</td>
<td>0%</td>
<td>69.29% @ 2103.5</td>
</tr>
<tr>
<td>SiO₂</td>
<td>1931.3</td>
<td>2027.3</td>
<td>61.08%</td>
<td>61.75% @ 2055</td>
</tr>
</tbody>
</table>

Note: All Aluminum yield whether they be at 2070 or the maximum aluminum yield for a given temperature, are lower than the Aluminum yield without flux addition.
4.2. Effect of Adding Component Combinations on the process

The same procedure was followed but an additional component was added. The aluminum yield for a two-flux component system was determined. As before, Initial amount of Al in slag $0.4\text{Al}_4\text{C}_3 - 0.4\text{Al}_2\text{O}_3 = 0.4(2) + 0.4(4) = 2.4$ moles

| Table 2. Effect of CaO –SiO₂ addition |
|---|---|---|---|---|---|---|
| CaO % | SiO₂ % | T slag (C) | T liquid (C) | Max. Al (moles) @ T | Al (moles) @2070°C** | % Al Yield @2070 |
| 10 | 10 | 1657.5 | 2045 | 1.5839 @ 2045 | 1.5094 | 62.89% |
| 20 | 0 | 1655.3 | 2085 | 1.663 @ 2103.5 | 1.834E-5 | 0% |
| 0 | 20 | 1931.3 | 2027.5 | 1.4819 @ 2055 | 1.466 | 61.08% |
| 15 | 5 | 1657.2 | 2055 | 1.6258 @ 2095 | 0.533 | 22.21% |
| 5 | 15 | 1663.2 | 2031.7 | 1.5381 @ 2070 | 1.5381 | 64.09% |

| Table 3. Effect of MgO –SiO₂ addition |
|---|---|---|---|---|---|---|
| MgO % | SiO₂ % | T slag (C) | T liquid (C) | Max. Al (moles) @ T | Al (moles) @2070°C** | % Al Yield @2070 |
| 10 | 10 | 1742.9 | 1990 | 1.5338 @ 2050 | 1.4863 | 61.93% |
| 20 | 0 | 1747.1 | 1990 | 1.5928@ 2042.1 | 1.5337 | 63.90% |
| 0 | 20 | 1931.3 | 2027.3 | 1.4819@ 2055 | 1.466 | 61.08% |
| 15 | 5 | 1742.9 | 1990 | 1.5638@ 2041.5 | 1.4906 | 62.11% |
| 5 | 15 | 1740.9 | 2015 | 1.5079 @ 2050 | 1.4781 | 61.59% |
Summary of the Flux Analysis

→ The presence of CaO significantly decreases the temperature at which slag (including Al₄C₃) is formed. This means that composition of CaO in the flux reduces the operating temperature of the Upper Reactor region.

→ The presence of SiO₂ as well as that of MgO reduces the temperature at which the liquid alloy is formed in the second stage of the two stage reactor.

→ Despite this affect of reducing considerably the operating temperatures of the reactor stages, it was shown that the presence of these flux components either individually or in pairs, decreases the original Aluminum yield of 75%.
In industry, the addition of flux is usually known to be beneficial to the smelting process. For the case of the carbothermic reduction of alumina, it was found that this is not the case.

A possible explanation for this result could be the effect of the presence of oxygen in contact with the Aluminum liquid that is forming. Cochran’s two stage reactor had a two stage process partially in order to avoid the interference of carbon monoxide gas with the liquid aluminum. Therefore, interaction with oxygen atoms could be the downfall of process efficiency.
A Previous study on mole ratios of oxygen to aluminum
2011 Study by School of Mining and Metallurgical Engineering, Greece [1]

A study recently performed in Greece showed that the mole to mole ratio of oxygen and Aluminum in the initial charge (usually Al_2O_3) affects the final aluminum yield.[1]

Result: As you decrease the number of moles of oxygen to the number of moles of Aluminum, you increase your Aluminum yield and reduce losses to $\text{Al}(g)$ and $\text{Al}_2\text{O}(g)$

Perhaps, the inverse can be applied also. Addition of CaO, MgO and SiO_2 increases the amount of oxygen present which could potentially account for reduction in yield.

Figure 4: Calculated aluminium molar speciation and alumina to metallic aluminium reduction yield at 2200 °C in system with varying initial aluminium to oxygen atomic ratio and excess carbon. For ratio 3 oxygen atoms / 2 Al atoms the initial system is equivalent to the composition of $\text{Al}_2\text{O}_3+10\text{C}$, for 2 oxygen atoms / 2 Al atoms to $\frac{1}{2}(\text{Al}_2\text{O}_4\text{C}+19\text{C})$, for 1 oxygen atoms / 2 Al atoms to $\text{Al}_2\text{OC}+9\text{C}$, and for 0 oxygen atoms / 2 Al atoms to $\frac{1}{2}(\text{Al}_4\text{C}_3+17\text{C})$.

Next>> Variation in amount of oxygen added as a function of Aluminum yield.
5.2 Variation in the moles of oxygen reacting with the slag

A possible explanation for the reduction in Aluminum yield by addition of Flux

Input:
- 1 mol of \((\text{Al}_2\text{O}_3)0.5(\text{Al}_4\text{C}_3)0.5\)
- \(<\text{A}>\) mol of \(O\)
Vary \(<\text{A}>\) from 0 to 2.5 by 0.01
T = 2070°C

Figure 16 shows that the number of moles of Al produced decreases as the input number of moles of oxygen added to the slag increases.

Note: This confirms the initial assumption that the presence of oxygen atoms in the flux reduce the aluminum yield.

Figure 16. Aluminum yield as a function of the number of moles of oxygen present.
Thank you.
References

[3] FactSage Summary. FTOxCN

