Case 7: Nb-, V- and Ti- carbide and nitride precipitation in microalloyed steels

Ferrous Processing 1

🐯 McGill CRCT

Iontreal 2013

Microalloyed steels are used for special high-strength applications such as pipelines. In order for the steel to acquire good mechanical properties, it needs to be thermo-mechanically treated. FactSage can help in finding the correct temperatures for treating these steels.

The steel is annealed in the austenite region an then cooled through the temperatures Ar3 and Ar1 temperatures (continuous cooling austenite to ferrite transformation start and finish.

The goal of this study is to find the ideal annealing temperatures to avoid precipitation of Nb carbonitrides and promote precipitation of NbC

McGill CRCT

2013

Ferrous Processing 2

1. A typical microalloyed steel composition is entered (For more information, refer to J. Calvo et al. / Materials Science and Engineering A 520 (2009) 90–96)

F Reactants - Equilib										X			
File Edit Table Units Data Search Help						Data Search						X	
□ 🗃 🕂 💷 T(C) P(atr						-Databases - 1/19 compound databases, 1/19 solution databases							
1.10						Gact	GactSage"	SGTE	compounds only	Mise	cellane	ous	
						FactPS	FScopp FSlead	BINS SGPS	solutions only no database	EXAM	🔲 SGTE#	□ SGTE*	
		Mass(g)		Species		FT salt	ESlite	SGTE					
		97.935	Fe			FTmisc	FS stel	SGnobl SGsold	Clear All				
	+	0.039	С			FT0xCN	🗖 FSupsi	SGnucl	Select All				
	+	1.51	Mn			FTfrtz		Other	Add/Remove Data				
	+	0.08	Si				ELEM FTdemo		RefreshDatabases				
	+	0.018	Ti			-Information -		Tonaci					
	+	0.28	Мо				2 9	alact or	when ESe	tol data			
	+	0.068	Nb				2.0		nly the FSs	iei ualai	Jase.		
	+	0.011	AI										
	+	0.05	V										
	+	0.0095	N			– Options ––––	la alu			insite			
						Include Limits Organic species CxHy, X(max) = 2							
						Default □ aqueous species Minimum solution components: O 1 ⊙ 2 cpts							
										1	<i></i>		
Fact	Sag	e 6.3 Compound: 1/	'19 dal	abases Solu	ti	Cance	:I		Summary		<u> </u>	OK	

Ferrous Processing 3

🐯 McGill CRCT

1. We are interested in carbide, nitride and carbonitride precipitation, so we will select all the solids...

4. We will select a range of temperature encompassing the whole austenite phase.

Ferrous Processing 4

McGill CRCT

Nontrea

1. Plot g vs T(C) for all solids and solutions having a maximum weight greater than 0

Т		Constant	C	()	1.4. % (_:_)	1./L % ()	A - 11-11-1 (1-2	A - 12-12-12-12-12-12-12-12-12-12-12-12-12-1	
· .	#	Species	Gram (min)	Gram (max)	Wt.% (min)	Wt.% (max)	Activity (min)	Activity (max)	Ľ
+	358	FCC1#1	0	99.989	0	0	0.992623	1.	
+	359	FCC1#2	0	8.3120E-02	0	0	0.549361	1.	
+	360	FCC1#3	0	6.6062E-02	0	0	0.486612	1.	
_	361	BCC1#1	0	100.	0	0	0.989707	1.	
_	362	BCC1#2	0	0	0	0	1.7633E-02	1.	
-	363	BCC1#3	0	0	0	0	4.0176E-05	7.0177E-02	_
_	364	HCP1#1	0	0.227848	0	0	0.698341	1.	
_	365	HCP1#2	0	0	0	0	0.698341	1.	
_	366	HCP1#3	0	0	0	0	0.143868	0.776486	
4	367	CEME	0	8.0848E-03	0	0	9.2383E-03	1.	
_	368	M23C#1	0	0.134027	0	0	8.8504E-13	1.	
	369	M23C#2	0	0	0	0	8.8504E-13	0.106998	
	370	M7C3#1	0	0	0	0	2.8610E-07	0.689703	
	371	M7C3#2	0	0	0	0	2.8610E-07	0.689703	
	372	M6C#1	0	0	0	0	6.5418E-05	0.19351	
	373	M6C#2	0	0	0	0	6.5418E-05	0.19351	
		ELEMENTS							
	374	Mo_GAS	0	0	0	0	0	0	
	374	MO_GAS			s Order ole © integ		ect Top 24	8 species selecte	

Ferrous Processing 5

🐯 McGill CRCT Montreal

1. From the graph, we can deduce equilibrium transformation temperatures from austenite to ferrite.

2. We should also look at the very low compositions, since all the microalloyed elements will be present in very small quantities.

🐯 McGill CRCT

Iontrea

2013

Ferrous Processing 6

Ferrous Processing 7

🐯 McGill CRCT

1. We will first select all the species in FCC#1 and se how they are distributed.

+ 1 + 2 + 3 + 4 + 4	F <u>Sstel-</u> 1 2 3 4	Al1C1(FCC1#1) Fe1C1(FCC1#1) Mn1C1(FCC1#1)	0 0 0	2.8766E-05 0.215328	7.9756E-15			
+ 2 + 3 + 4 + 5	2 3	Fe1C1(FCC1#1) Mn1C1(FCC1#1)	0		7.9756E-15			
+ 3 + 4 + 5	3	Mn1C1(FCC1#1)	-	0.215328		5.1234E-05	8.7763E-18	1.2864E-10
+ 4 + 5	-		0		3.8087E-03	1.314	6.5735E-06	6.7745E-04
+ !	4		U	3.3298E-03	6.2789E-05	0.675137	9.7070E-06	5.0046E-03
		Mo1C1(FCC1#1)	0	7.4076E-02	6.9437E-05	47.762	8.0782E-05	0.12863
	5	Nb1C1(FCC1#1)	0	6.7085E-02	4.9567E-06	83.734	1.6287E-02	0.836682
+ 6	6	Si1C1(FCC1#1)	0	2.0667E-04	1.8057E-12	3.8675E-04	1.2475E-12	9.0385E-10
+ 7	7	Ti1C1(FCC1#1)	0	7.3481E-03	1.3825E-08	12.548	4.4916E-04	3.0424E-03
+ {	8	V1C1(FCC1#1)	0	5.1529E-02	7.2485E-05	49.327	2.7622E-04	0.461906
+ 5	9	Al1N1(FCC1#1)	0	4.7620E-06	3.0668E-17	9.2009E-06	6.7633E-21	1.6310E-10
+ 1	10	Fe1N1(FCC1#1)	0	3.4952E-02	1.4342E-05	20.023	5.1621E-10	8.7625E-05
+ 1	11	Mn1N1(FCC1#1)	0	5.4179E-04	2.2803E-05	1.0966E-02	4.2497E-07	3.1491E-05
+ 1	12	Mo1N1(FCC1#1)	0	7.5293E-04	3.5533E-06	1.0079	1.8266E-07	1.9718E-05
+ 1	13	Nb1N1(FCC1#1)	0	3.0861E-03	2.8472E-08	5.0603	8.9778E-04	0.281682
+ 1	14	Si1N1(FCC1#1)	0	3.4189E-05	1.5918E-13	6.7809E-05	4.4179E-23	4.7008E-09
+ 1	15	Ti1N1(FCC1#1)	0	1.4035E-02	8.0528E-11	70.308	0.187213	0.5254
+ 1	16	V1N1(FCC1#1)	0	2.3014E-02	4.7227E-07	36.827	4.4993E-03	0.360668
+ 1	17	Al1Va1(FCC1#1)	0	1.0984E-02	5.6111E-16	1.1347E-02	1.2484E-11	3.8179E-06
+ 1	18	Fe1Va1(FCC1#1)	0	97.787	3.1869E-04	97.895	0.773257	0.979434
+ 1	19	Mn1Va1(FCC1#1)	0	1.5077	2.0503E-05	1.8985	1.0308E-02	5.7561E-02
+ 2	20	Mo1Va1(FCC1#1)	0	0.279503	2.5722E-05	4.0232	1.0273E-03	4.0175E-03
+ 2	21	Nb1Va1(FCC1#1)	0	6.7649E-02	1.8085E-03	1.5027	3.6155E-10	2.3636E-04
+ 2	22	Si1Va1(FCC1#1)	0	7.9880E-02	1.0528E-14	8.2395E-02	1.2847E-13	2.1733E-06
+ 2	23	Ti1Va1(FCC1#1)	0	1.0950E-02	4.5537E-06	1.9022	9.4298E-14	1.1330E-05
+ 2	24	V1Va1(FCC1#1)	0	4.9850E-02	9.8645E-03	4.0583	2.7361E-07	1.1268E-04
F	FSstel-	FCC1						
	05	Al1C1(FCC1#2)	0	7.3049E-14	6.2376E-16	5.6239E-05	8.7763E-18	1.2864E-10
2	25	r montr oormet			6.3416E-04	1.8592	6.5735E-06	6.7745E-04

Ferrous Processing 8

McGill CRCT Montreal

Ferrous Processing 9

McGill CRCT Montreal

Ferrous Processing 10

🐯 McGill CRCT

Montreal

Ferrous Processing 11

McGill CRCT Montreal

Ferrous Processing 12

WcGill CRCT Montreal 2013

1.E+00 This temperature 1. Now that we know temperature region for NbC temperature what each phase is region for NbN region is most precipitation composed of, it precipitation favorable for would be convenient carbide Nb(C,N) to plot the species 1.E-01 NbC precipitation that interest us the VC NbN most, namely (Nb,Ti,V)(C,N)TiN **l.E-02** TiN 2. Copying the TiC amounts of NbC, TiC, ... species contained in FCC#1, ٧C VN FCC#2 and FCC#3 1.E-03 as well as the TiC carbide and VN NbN cementite phases to cementite Excel, the following 1.E-04 graph is obtained. ⁹⁰⁰ Temperature (°C 500 700 1300 1500

3. In summary, we can now figure out what the equilibrium precipitates will be at each temperature for designing the thermal treatment needed.

GactSage[™]

Ferrous Processing 13

🐯 McGill CRCT