

Faculty of Engineering
Department of Mining and Materials Engineering

Extracting Rare Metals from Municipal Solid Waste (MSW) Incineration Residues

MIME 572: Computational Thermodynamics Raphaël Gervais (260235337)

BACKGROUND

Rare Metals

- Catalytic properties, fluorescence, corrosion resistance
- In modern high technologies
 - Pt and Pd: emission control devices
 - Indium-tin-oxide: thin films for LCDs
- Production and consumption clustering
 - □ Japan: 30% of annual consumption
 - South Africa: 70% of Cr, Mn, Ta and PGM production

Municipal Solid Waste(MSW)

- MSW incineration residue(bottom ash + fly ash) → 1300-1800°C→ melting furnace fly ash(MFA)
- MFA generation
 - Reduced volume of residue in landfill
 - Generation of flue gases containing expensive metals
- Japanese government seeks to recover "strategic metals" from flue gas
 - Bi, Ga, Ge, In, Pd, Sb, Pt, Ta, Te, Tl and Zr

Surface Melting Furnace

Surface Melting Furnace

- □ Two primary operating variables
 - □ pO_2 : varied by changing input fuel composition \rightarrow CO/CO₂ ratio
 - Furnace temperature: control by changing input fuel and its flow rate
- Surface melting furnace operating optimally
 - Maximizes amount of "strategic metals" reporting to flue gas

Surface Melting Furnace

Input to furnace:

	Plant A 87% BA + 13% FA	
0	2.3E+01	
C	1.5E+00	
N	4.2E-02	
P	4.1E-01	
S	2.1E-01	
AI	2,5E+00	
Ca	3.3E+00	
Cd	1.8E-04	
CI	8.1E-01	
Fe	1.3E+00	
K	4.8E-01	
Na	1.5E+00	
Mg	4.9E-01	
Cu	2.1E-01	
Pb	5.5E-03	
Si	7.0E+00	
Zn	1.0E-01	
Ag	9.2E-05	
Bi	1.5E-05	
Co	5.8E-04	
Cr	1.3E-02	
Ga	2.4E-04	
Ge	3.0E-05	
In	4.8E-06	
Mn	3.7E-02	Valuable Metals: Must
Mo	3.4E-04	
Ni	7.6E-03	Volatilise and Recover
Pd	4.7E-06	
Sb	2.5E-04	
Sn	1.2E-03	
Ta	4.3E-05	
Te	1.8E-06	
TI	7.0E-07	
W	5.6E-05	
Zr	8.4E-04	

Objectives

- 1) Create FactSAGE model of surface melting furnace operation
- 2) Use model to investigate influence of pO₂ and temperature on surface melting furnace operation
- 3) Find optimal operating conditions to maximize "strategic metal" content in flue gas

Outline

- Background
- FactSAGE Simulation Setup
- Model validation
- Effects of varying temperature and pO₂
- □ Furnace optimization
- Conclusion

FACTSAGE SIMULATION SETUP

- Originally modeled furnace as an open system
 - 10 step process: <A> consisted in O₂ introduced into system at every step
 - Sough to investigate flue gas generation over time

- Modeling furnace as open system provided results that did not agree with plant data
- New simulation conducted:
 - Normal system, 1 step
 - Fixed temperature and oxygen partial pressure
- □ 36 input elements into EQUILIB
 - Original calculations exceed maximum number of computations
 - Solution species had to be carefully selected

Database selection: in order of priority

Ftoxid: oxides, ceramic solid solutions, slags

Ftsalt: pure salts and salt solutions

Fact 53: metals, oxides, salts, C_xH_y , gases

😝 Data Search						×						
Dil	4 11 7		2 H F 1 . 1 . 1									
	- Databases - 4/17 compound databases, 3/15 solution databases											
- Gact	₹act Sage"	SGTE	compounds only	Mis	cellane	ous						
☐ ELEM	FScopp	■ BINS	solutions only	☐ AL-G	☐ EXAM	☐ INHO						
☐ FACT	☐ FSlead	SGPS	no data	☐ SGTE*								
✓ Fact53	☐ FSlite	✓ SGTE	Class All									
✓ FToxid	☐ FSstel	SGnobl	Clear All									
✓ FTsalt	FSupsi	SGsold	Select All									
☐ FTmisc ☐ FThall	FSnobl	☐ SGnucl	33.30(7.11									
☐ FThelg	Other	☐ TDnucl	Add/Remove Data									
☐ FTpulp	□ OLIP											
☐ FTlite	OLIG	OLIL	RefreshDatabases									
- Information	_											
monitori												
Options —												
Options	⊢ In <u>cl</u> u			Limits———								
Default		gaseous ions (pla		Organic species C	xHy, X(max) =	2						
Derdan		aqueous species limited data comp		finimum solution o	components: O	O 2 cpts						
		mikou uata comp	300m (200)									
C			C		f	ΠK						
Canc	eı		Summary			UK						

- Solution species base phases selected:
 - FToxid-SLAG?
 - Ftoxid-MeO_?
 - FTsalt-SALTB

 Species removed from these base phases to speed up calculations

MODEL VALIDATION

Comparison of Experimental Data to Publication and Current FactSAGE Simulation Results; $T=1400^{\circ}C$, $pO_2=0.05$ atm.

		Distribution ratio (%)	Error Sum o	f Squares			
Element	Experimental	Publication Simulation	Current Simulation	Publication Simulation	Current Simulation		
Ag	42.50%	100.00%	100.00%	33.06%	33.06%		
Te	100.00%	100.00%	100.00%	100.00% 0.00%			
Tl	100.00%		100.00%	100.00%	0.00%		
Bi	100.00%	100.00%	100.00%	0.00%	0.00%		
Sb	78.00%	100.00%	100.00%	4.84%	4.84%		
Mn	0.00%	30.00%	2.35%	9.00%	0.06%		
In	100.00%		2.23%	100.00%	95.58%		
Ga	20.00%	99.00%	100.00%	62.41%	64.00%		
Sn	42.50%	32.50%	64.61%	1.00%	4.89%		
Cr	0.00%	0.00%	2.09%	0.00%	0.04%		
Ge	52.50%	100.00%	100.00%	22.56%	22.56%		
Ni	0.00%	1.00%	36.55%	0.01%	13.36%		
Со	0.00%	100.00%	8.33%	100.00%	0.69%		
Pd	100.00%		100.00%	100.00%	0.00%		
V	0.00%			100.00%	100.00%		
Zr	0.00%	0.00%	0.00%	0.00%	0.00%		
Мо	15.00%	100.00%	100.00%	72.25%	72.25%		
Ta	0.00%	0.00%	6.90%	0.00%	0.48%		
W	0.00%	100.00%	100.00%	100.00%	100.00%		
All Data				42%	27%		
Excluding Database							
Omissions				23.78%	17.43%		

Current Simulation:

- FactSAGE simulation presented here matches plant results more closely than publication
 - □ ~30% lower error sum of squares
 - Includes more elements, notably TI and In
- Superior results due to
 - Newer version of FactSAGE
 - Better starting assumptions
- Inaccurate Mo results in both simulations
 - No Mo slag database

TEMPERATURE AND OXYGEN PARTIAL PRESSURE EFFECTS

Varying pO_2 at T=1300°C

T=1300												
	Distribution Ratio (%)											
PO2 (atm.)	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	
Bi	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	96.18%	91.86%	
Ga	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Ge	100.00%	0.30%	0.18%	0.13%	0.11%	0.09%	0.08%	0.07%	0.07%	0.06%	0.06%	
In	11.45%	36.30%	36.96%	37.65%	38.34%	39.05%	39.78%	40.52%	41.28%	42.05%	42.85%	
Pd	55.12%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Sb	32.31%	6.82%	7.35%	7.66%	7.83%	7.93%	7.99%	8.02%	8.03%	8.02%	8.00%	
Ta	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Te	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
TI	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Zr	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	

Varying pO₂ at T=1300°C

- At 1300°C, only Ge, In, Pd and Sb see changes in distribution ratio with varying oxygen partial pressure
- As pO₂ different compounds containing these species form
 - □ GeS(g) \rightarrow GeO(g) \rightarrow GeO(g) +GeCl₄(g)
 - \square In(g)+In₂S(g) \rightarrow In(g)+InO (g)
 - \square Pd(g) \rightarrow Pd(g)+PdO₂(g)
 - \square Sb(g) \rightarrow SbCl₃(g)

Varying pO_2 at T=1400°C

T=1400												
	Distribution Ratio (%)											
PO2 (atm.)	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	
Bi	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Ga	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	91.86%	
Ge	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
In	100.00%	7.17%	4.30%	3.21%	2.61%	2.23%	1.97%	1.77%	1.62%	1.41%	0.06%	
Pd	73.37%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	42.85%	
Sb	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Ta	31.45%	6.12%	6.54%	6.74%	6.84%	6.90%	6.93%	6.94%	6.94%	6.89%	8.00%	
Te	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
TI	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Zr	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	

Varying pO_2 at T=1400°C

- At 1400°C, only In, Pd and Ta see changes in distribution ratio with varying oxygen partial pressure
- As pO₂ different compounds containing these species form
 - $\square \ln_{(g)} + \ln_2 S(g) \rightarrow \ln(g) + \ln O(g)$
 - \square Pd(g) \rightarrow Pd(g)+PdO(g)+PdO₂(g)
 - TaOCl₃ forms less favourably, increase in oxides doesn't compensate

Varying pO_2 at T=1500°C

T=1500													
	Distribution Ratio (%)												
PO2 (atm.)	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1		
Bi	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Ga	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Ge	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
In	100.00%	100.00%	72.43%	54.02%	44.02%	37.65%	33.20%	29.90%	27.35%	25.32%	23.66%		
Pd	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Sb	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Та	39.42%	5.60%	5.54%	5.47%	5.41%	5.34%	5.30%	5.33%	5.35%	5.35%	5.34%		
Te	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
TI	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Zr	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		

Varying pO_2 at T=1500°C

- At 1500°C, only In and Ta see changes in distribution ratio with varying oxygen partial pressure
- As pO₂ different compounds containing these species form
 - \square $\ln(g)+\ln_2S(g)\rightarrow \ln(g)+\ln O(g)$
 - TaOCl₃ forms less favourably, increase in oxides doesn't compensate

FURNACE OPTIMIZATION

Furnace Optimization

- Want to know optimal operating conditions to maximize value of "strategic metals" in flue gas
- Used previously calculations
 - \square pO₂(atm.)=0 0.1 0.01
 - $T(^{\circ}C)=1300\ 1500\ 100$
- Used most up to date metal prices to find operating conditions of maximum flue gas monetary value

Furnace Optimization

- Optimal operating conditions
 - \blacksquare T=1500°C and pO₂ = 0.01 atm.
 - \$20.13 of "strategic metals" per tonne of MFA processed

Conclusion

- FactSAGE simulation of surface melting furnace more accurate than publication
- Used to investigate the effects of temperature and oxygen partial pressure on composition of flue gas
- □ Optimal furnace operating conditions estimated at T=1500°C and $pO_2=0.01$ atm.

References

- C.-H. Jung, M. Osako / Chemosphere **69** (2007)
- □ <u>www.kitco.com/</u>
- □ http://www.metalprices.com/