# **BOF** process



**Ferrous Processing 1** 

**McGill CRCT** 

# **Case-6 Oxygen steel making**

- Based on the following HM and flux chemistry chemistry, we would like to calculate the equilibrium composition of HM and Slag at 1600 deg C.
- We would also like to calculate the slag viscosity of the equilibrium slag at its liquidus temperature.
- We can assume excess oxygen in the system.

| HM Chemist | ry (wt%) |                  |         | Amour | ts charged |
|------------|----------|------------------|---------|-------|------------|
| CARBON     | 4.6844   |                  |         | (     | tons)      |
| CHROMIUM   | 0.028    | Scrap Ch         | emistry | Туре  | Wt Charged |
| COPPER     | 0.0035   | (wt <sup>o</sup> | %)      |       | 040        |
| MANGANESE  | 0.6975   | Si               | 0.02%   | HIM   | 213        |
| NICKEL     | 0.0075   | Mn               | 0.05%   | Scrap | 60         |
| PHOSPHORUS | 0.0612   | Elux Ch          | omictry |       | _          |
| SILICON    | 0.4935   | Flux CI          | emistry | Dolo  | 5          |
| SULPHUR    | 0.0027   | (W               | t%)     | Burnt | 7          |
| TITANIUM   | 0.0404   | Burnt Lime       | 95% CaO | Berne |            |
| VANADIUM   | 0.0097   | Dolo Lime        | 55% CaO |       |            |



**Ferrous Processing 2** 

McGill CRCT

- FToxid: slag
- FTmisc: molten steel
- FSstel: scrap

| Databases - 4/19 compound databases, 3/19 solution databases         Miscellaneous         FactPS       SGTE       Compounds only       SGTE       Miscellaneous         Froxid       FSited       SGPS       no database       EXAM       SGTE#       SGTE         Froxid       FSited       SGnobi       Clear All       EXAM       SGTE#       SGTE*         FTmalc       FSstel       SGnobi       Select All       Add/Remove Data       FTfriz       Add/Remove Data         FThelg       Other       TDnucl       RefreshDatabases       Imite       Grganic species CxHy, X(max) = [2]         Information       -       gaseous ions (plasmas)       aqueous species       Organic species CxHy, X(max) = [2]         Minimum solution components: O 1 ③ 2 cpts       Imited data components: O 1 ③ 2 cpts       Imited data components: O 1 ③ 2 cpts | <b>(</b> 7                                                                                                                                       |                                                                                                                                                           | Data Search                                                                                                                |                                                                    |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|
| Options       Include         □ gaseous ions (plasmas)       □ aqueous species         □ limited data compounds (25C)       Minimum solution components: ○ 1 ⊙ 2 cpts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Databases - 4/19<br>Cact FactPS F FactPS F FToxid F FTsalt F FThall F FThall F FTOxCN F FTfrtz FThelg FTpulp F FTpulp F FTlite F Information F | compound databases, :<br>actSage" SGTE<br>Scopp BINS<br>Slead SGPS<br>Slite SGTE<br>Sstel SGnobl<br>Snobl SGsold<br>Supsi SGnucl<br>Cther<br>Tdemo TDnucl | 3/19 solution databation databations only solutions only no database Clear All Select All Add/Remove Data RefreshDatabases | ASES<br><b>Miscellan</b><br>EXAM SGTI                              | E <b>#</b> □ SGTE*           |
| Cancel Summary OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Options<br>Default<br>Cancel                                                                                                                   | Include<br>gaseous ions (pla<br>aqueous species<br>limited data comp                                                                                      | ssmas)<br>pounds (25C) Mi                                                                                                  | imits<br>ganic species CxHy, X(ma<br>inimum solution components: ( | x) = 2<br>O 1 ⊙ 2 cpts<br>OK |

WCGill CRCT

Montreal 2013



**Ferrous Processing 3** 

## **Using Streams**

| 4                                                                                                                                                                            | React                        | ants - Equilib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 🗆 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit Table Units Data                                                                                                                                                   | Search Help<br>T(C) P(atm) I | Energy(J) Mass(g) Vol(litre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 📑 🛃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mass(g)         4.6844         +         0.028         +         0.6975         +         0.4935         +         0.0027         +         0.0404         +         93.9716 | Species                      | Phase       T(C)         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I | P(total)**       Stream#       Data         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I         I       I |
| FactSage 6.3 Compound: 2/                                                                                                                                                    | /20 databases Solution:      | Next >><br>1/19 databases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



Ferrous Processing 4

The second secon

## **Selecting Solution and Temperature**

| 🗘 Menu - Equilib: last system – 🗆 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File       Units       Parameters       Help         Image: Comparison of the state of the |
| Reactants         (7)           (gram)         4.6844         C         +         0.6975         Mn         +         0.4935         Si         +         0.0404         Ti         +         93.9716         Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Products Compound species Custom Solution species Custom Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| gas © ideal © real       0         aqueous       0         pure liquids       0         pure solids       0         suppress duplicates apply       FTmisc-MAT2         species:       0         FTmisc-PYRRA       APyrrhotite         FTmisc-PYRRA       APyrrhotite         Image: Details       Image: Details         Image: Details       Image: Detai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Target       Legend       ✓ Show ● all ● selected       Total Species (max 1500)       7         Estimate T(K):       1000       +- selected 1       ✓ Show ● all ● selected       1         Mass(g):       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Final Conditions       Conditions <a> <b>       T(C)       P(atm)       Product H(J)</b></a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FactSage 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



**Ferrous Processing 5** 

**McGill CRCT** 

## **Check Results**

| (y                                                                                                                                                         | Results -                                                                 | Equilib                         | 1400 C                                                                                      |                                       |                | x        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|----------------|----------|
| Output Edit Show Pages                                                                                                                                     | T(C) P(atm) E                                                             | nergy(J)                        | Mass(g) Vol(litre)                                                                          |                                       | <u>III 📑 🗗</u> | <u>7</u> |
| (gram) 4.6844 C + 0.028 C<br>(gram) 0.0027 S + 0.0404<br>99.918 gram Fe-liq<br>(99.918 gram, 2.1045 mol<br>(1400 C, 1 atm,<br>( 94.049 wt.<br>+ 4.6882 wt. | r + 0.6975 Mn +<br>Ti + 93.9716 Fe<br>)<br>a=1.0000)<br>% Fe<br>% C       | 0.493                           | 5 Si +                                                                                      | FTmisc<br>FTmisc                      | FactSage 6.3   | ~        |
| + 2.8023E-02 wt.<br>+ 0.69807 wt.<br>+ 2.7022E-03 wt.<br>+ 0.49390 wt.<br>+ 4.0433E-02 wt.<br>System component                                             | <pre>% Cr % Mn % S % Si % Ti Mole fract </pre>                            | ion M                           | lass fraction                                                                               | FTmisc<br>FTmisc<br>FTmisc<br>FTmisc) |                |          |
| Fe<br>Mn<br>Cr<br>Ti<br>S<br>Si<br>C                                                                                                                       | 0.79959<br>6.0329E<br>2.5588E<br>4.0105E<br>4.0012E<br>8.3495E<br>0.18533 | -03<br>-04<br>-04<br>-05<br>-03 | 0.94049<br>6.9807E-03<br>2.8023E-04<br>4.0433E-04<br>2.7022E-05<br>4.9390E-03<br>4.6882E-02 |                                       |                |          |
| The cutoff concentration h                                                                                                                                 | as been specified                                                         | i to 1.                         | 0000E-75                                                                                    |                                       |                |          |
| H G<br>(J) (J)                                                                                                                                             | V<br>(litre)                                                              | S<br>(J/K)                      | Cp<br>(J/K)                                                                                 |                                       |                | ~        |



Ferrous Processing 6

WCGill CRCT Montreal 2013

## Save Stream

| Q   |                                                         | Results - Equilib 1400 C 🛛 🗕 🗖 🗙                                                                                                                                                                                                     |                    |
|-----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Out | put Edit Show Pages<br>Save or Print<br>Plot            | T(C) P(atm) Energy(J) Mass(g) Vol(litre)                                                                                                                                                                                             |                    |
|     | Equilib Results file                                    | FactSage 6.3 A                                                                                                                                                                                                                       |                    |
|     | Stream File                                             | Recycle all streams                                                                                                                                                                                                                  |                    |
|     | Fact-XML                                                | Stream file properties     Save gas phase       Stream file properties     Save pure liquids                                                                                                                                         |                    |
|     | Fact-Optimal                                            | Summary of streams Save aqueous Save pure solids                                                                                                                                                                                     |                    |
|     | Fact-Function-Builder                                   | Directory (C:\Program Files\FactSage\)<br>Save solutions                                                                                                                                                                             | ALL solutions      |
|     | Refresh                                                 | Mn FTmisc                                                                                                                                                                                                                            | FTmisc-FeLQ Fe-liq |
| Т   | + 0.49390 w<br>+ 4.0433E-02 w                           | % Si     FTmisc       % Ti     FTmisc)                                                                                                                                                                                               |                    |
| Ţ   | System componen<br>Fe<br>Mn<br>Cr<br>Ti<br>S<br>Si<br>C | Mole fraction Mass fraction<br>0.79959 0.94049<br>6.0329E-03 6.9807E-03<br>2.5588E-04 2.8023E-04<br>4.0105E-04 4.0433E-04<br>4.0012E-05 2.7022E-05<br>8.3495E-03 4.9390E-03<br>0.18533 4.6882E-02<br>as been specified to 1.0000E-75 |                    |
|     | ne cutorr concentration                                 | as been specified to 1.00008-75                                                                                                                                                                                                      |                    |
|     | H G<br>(J) (J)                                          | V S Cp<br>(litre) (J/K) (J/K)                                                                                                                                                                                                        |                    |



Ferrous Processing 7

**McGill CRCT** 

- Save this as a stream (I named it HMChem)
- Perform similar actions for remaining streams

| Save File in C:\Program Files\FactSage\Mix                        | kt*.dat 🛛 🗙 |
|-------------------------------------------------------------------|-------------|
| FTmisc-FeLQ Fe-liq                                                | OK          |
| Enter a stream file number<br>(1 - 9999)                          | Cancel      |
| or enter a stream file name (up to 26 characters), for<br>example |             |
| My very favorite stream                                           |             |
| - avoid the special characters ?@/"^!~,.''*&%+;:<> $0$            |             |
| ]0                                                                |             |
|                                                                   |             |

| 47                                   |                               | Reactants - Equilib                  | - 🗆 🗙                        |
|--------------------------------------|-------------------------------|--------------------------------------|------------------------------|
| File Edit Table                      | Units Data Search Help        | ) P(atm) Energy(J) Mass(g) Vol(litre |                              |
| Mas<br>[0.02<br>+ [0.05<br>+ [93.93] | s(g) Specie<br>Si<br>Mn<br>Fe | s Phase                              | T(C) P(total)** Stream# Data |
|                                      |                               |                                      | Initial Conditions           |
|                                      |                               | Next >>                              |                              |
| FactSage 6.3 Cor                     | mpound: 3/20 databases        | Solution: 2/19 databases             |                              |

🐯 McGill CRCT

2013



**Ferrous Processing 8** 

- This time 25C was chosen
- Along with BCC from FSstel

| 4                                                                                                                                                                         | Menu - Equilib:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ 🗆 🛛                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Units Parameters Help                                                                                                                                                | T(C) P(atm) Energy(J) Mass(g) Vol(litre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 🖳 🕞 😿                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                           | (gram) 0.02 Si + 0.05 Mn + 99.93 Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |
| Products Compound species gas © ideal © real 0 aqueous 0 pure liquids 0 pure solids 0 suppress duplicates apply species: 0 Target - none - Estimate T(K): 1000 Mass(g): 0 | Image: Solution species       Full Name         Image: Figure 1       FSstel-BCC1       BCC_A2         Image: Figure 1       Image: Figure 1       Image: Figure 1         Legend - + · selected 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       Image: Figure 1       Image: Figure 1         Image: Figure 1       I | Custom Solutions         0 fixed activities         0 ideal solutions         0 activity coefficients         Details         Pseudonyms         apply       List         include molar volumes         Total Species (max 1500)       3         Total Solutions (max 40)       1 |
| Final Conditions <a>       ID       steps       Table</a>                                                                                                                 | T(C)     P(atm)     Product H(J)     €q       25     1     C     C       1     calculation     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uilibrium<br>normal C normal + transitions<br>transitions only<br>open<br>Calculate >>                                                                                                                                                                                            |
| FactSage 6.3                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |



**McGill CRCT** 

- You now have two streams (I've named them HMChem and Scrap)
- Now we need two more streams (1 for dolo lime and one for burnt lime)

| 🗘 Rea                                       | actants - Equilib                | X              | I                            | Reactants - Equilib                 | - 🗆 🗙                   |
|---------------------------------------------|----------------------------------|----------------|------------------------------|-------------------------------------|-------------------------|
| File Edit Table Units Data Search Help      |                                  | File Edit      | Table Units Data Search Help |                                     |                         |
| □ 🖆 🕂 🔟 T(C) P(at                           | tm) Energy(J) Mass(g) Vol(litre) |                | + 🔟 T(C) F                   | P(atm) Energy(J) Mass(g) Vol(litre) | III 📑 🕒 😿               |
| <br>                                        |                                  | 1.3            |                              |                                     |                         |
| Mass(g) Species                             | Phase T(C) P(total)** St         | tream# Data    | Mass(g) Species              | Phase T(C)                          | P(total)** Stream# Data |
| [I [LaU]                                    |                                  | 55             | CaO                          |                                     |                         |
|                                             |                                  | + 40           | MgO                          | <b>_</b>                            | 1                       |
|                                             |                                  | + 5            | Si02                         | ▼                                   | 1                       |
|                                             | 🗖 Initi                          | ial Conditions |                              |                                     | Initial Conditions      |
|                                             | _                                |                |                              |                                     |                         |
|                                             | Next >>                          |                |                              | Next >>                             |                         |
| FactSage 6.3 Compound: 3/20 databases Solut | tion: 2/19 databases             | FactSage 6.3   | Compound: 3/20 databases S   | iolution: 2/19 databases            |                         |



🐯 McGill CRCT

## **Pure Solids**

| 4                                                                                                                                                     | Menu - Equilib:                                                        | - 🗆 ×                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Units Parameters Help                                                                                                                            | T(C) P(atm) Energy(J) Mass(g) Vol(litre)                               | M 📑 🔁                                                                                                                                                                                 |
| Products<br>Compound species<br>gas ⓒ ideal O real O<br>aqueous O<br>pure liquids O<br>+ pure solids 71<br>✓ suppress duplicates apply<br>species: 71 | Solution species                                                       | Custom Solutions<br>0 fixed activities<br>0 ideal solutions<br>0 activity coefficients<br>Details<br>Pseudonyms<br>apply List<br>include molar volumes<br>Total Species (may 1500) 71 |
| - none -<br>Estimate T(K): 1000<br>Mass(g): 0                                                                                                         | Legend<br>✓ Show O all ⊙ selected<br>species: 0<br>solutions: 0 Select | Total Solutions (max 40) 0                                                                                                                                                            |
| Final Conditions <a>       ID       steps       Table</a>                                                                                             | T(C)     P(atm)     Product H(J)       25     1       1 calculation    | quilibrium<br>normal C normal + transitions<br>transitions only<br>open<br>Calculate >>                                                                                               |
| FactSage 6.3                                                                                                                                          |                                                                        | 11                                                                                                                                                                                    |



Ferrous Processing 11

The second secon

## **Combine Mixtures with Weights**

| 47                                                           | React                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ants - Equilib               | - 🗆 🗙                                                                                     |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| File Edit Table Units I                                      | Data Search Help<br>T(C) P(atm) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Energy(J) Mass(g) Vol(litre) | M 🕞 🖷 🚿                                                                                   |
| Mass(g)<br>5000000<br>+ 213000000<br>+ 7000000<br>+ 60000000 | Species<br>[DoloLime]  [HMChem]  [Lime]  [Scrap]  [Scrap] | Phase T(C)                   | P(total)**       Stream#       Data         1       1         2       3         3       4 |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Initial Conditions                                                                        |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Next >>                      |                                                                                           |
| FactSage 6.3 Compound:                                       | 3/20 databases Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/19 databases               | /                                                                                         |



Ferrous Processing 12

**McGill CRCT** 



Amount of oxygen -Educated guess

| 4                                                                                                                                                                                                  | Menu - Equilib                                                                                                                              | o: last system                                                                                    | - 🗆 ×                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Units Parameters Help                                                                                                                                                                         | T(C) P(atm) Energy(                                                                                                                         | (J) Mass(mol) Vol(litre)                                                                          |                                                                                                                                                                                               |
| Products     Compound species     * + gas O ideal • real 59     aqueous 0     pure liquids 0     * + pure solids 229     v suppress duplicates apply     * - custom selection         species: 288 | Solution species<br>Solution species<br>+ Base-Phase<br>+ FTmisc-FeLQ<br>I FToxid-SLAGA<br>I FToxid-SLAGA<br>+ FToxid-bC2S<br>+ FToxid-aC2S | Full Name<br>Fe-liq<br>ASlag-liq all oxides + S<br>AMonoxide<br>a'Ca2SiO4<br>a-Ca2SiO4            | Custom Solutions<br>0 fixed activities<br>0 ideal solutions<br>0 activity coefficients<br>Details<br>Pseudonyms<br>apply List<br>include molar volumes<br><u>Total Species (max 1500)</u> 372 |
| - none -<br>Estimate T(K): 1000<br>Mass(mol): 0<br>Final Conditions<br><a> <a> <a> <a> <a> <a> <a> <a> <a> <a></a></a></a></a></a></a></a></a></a></a>                                             | T(C)     P(atm)       1600     1                                                                                                            | Show C all C selected<br>species: 84<br>solutions: 7 Select<br>Product V(litre<br>11 calculations | Total Solutions (max 40)       7         Default          Equilibrium          • normal       O normal + transitions         transitions only          open       Calculate >>                |
| FactSage 6.3                                                                                                                                                                                       |                                                                                                                                             |                                                                                                   | ///                                                                                                                                                                                           |

WCGill CRCT



Limit of Oxygen Blowing

- Aiming for 500ppm (or 0.05 wt% C in FeLQ)
- Occurs at approximately 1530000g O<sub>2</sub>



**McGill CRCT** 

2013



Ferrous Processing 14

### **Products**



| (1600 C, 1  | aum,    | a-1.0 |
|-------------|---------|-------|
| ( 13.341    | wt.%    | FeO   |
| + 0.11941   | wt.%    | Fe203 |
| + 1.9438    | wt.%    | CaO   |
| + 67.136    | wt.%    | MgO   |
| + 16.927    | wt.8    | MnO   |
| + 0.53103   | wt.%    | Cr203 |
| + 9.7763E-0 | )4 wt.% | TiO2  |
|             |         |       |

+ 6.2565E+06 gram AMonoxide#1 (6.2565E+06 gram 1 0951E+05

| (Sestive gram, 1.09515tus mol) |               |  |  |
|--------------------------------|---------------|--|--|
| (1600 C, 1 a                   | tm, a=1.0000) |  |  |
| ( 3.8730                       | wt.% FeO      |  |  |
| + 0.12320                      | wt.% Fe2O3    |  |  |
| + 78.398                       | wt.% CaO      |  |  |
| + 4.7469                       | wt.% MgO      |  |  |
| + 12.679                       | wt.% MnO      |  |  |
| + 0.18018                      | wt.% Cr203    |  |  |
| + 6.6229E-04                   | wt.% TiO2     |  |  |

- -

| 6063E+0 | 8 gram Fe-1  | liq    |           |
|---------|--------------|--------|-----------|
| .6063E+ | 08 gram, 4.0 | 5801E- | +06 mol)  |
| (       | 1600 C, 1 at | sm,    | a=1.0000) |
| (       | 99.675       | wt.%   | Fe        |
| +       | 4.9950E-02   | wt.%   | С         |
| +       | 2.5290E-09   | wt.%   | Ca        |
| +       | 1.6186E-02   | wt.%   | Cr        |
| +       | 0.21547      | wt.%   | Mn        |
| +       | 3.7013E-02   | wt.%   | 0         |
| +       | 2.1753E-03   | wt.%   | S         |
| +       | 1.2811E-06   | wt.%   | Si        |
| +       | 6.7243E-08   | wt.%   | Ti        |
| +       | 4.0606E-07   | wt.%   | Mg        |
| +       | 1.0582E-03   | wt.%   | MgO       |
| +       | 1.4818E-03   | wt.%   | CaO       |
| +       | 5.0430E-08   | wt.%   | TiO       |
| +       | 3.2375E-04   | wt.%   | CrO       |
| +       | 2.6259E-09   | wt.%   | SiO       |
| +       | 1.3664E-03   | wt.%   | MnO       |
| +       | 4.5965E-07   | wt.%   | Cr20      |

+ 1.2129E-15 wt.% Ti20

FToxid FToxid FToxid FToxid FToxid FToxid

FToxid FToxid FToxid FToxid FToxid FToxid

+ 2.

+ 9.0432E+05 gram ASlag-lig#1 (9.0432E+05 gram, 15123. mol) (1600 C, 1 atm, a=1.0000) ( 17.638 wt.% SiO2 + 54.355 wt.% CaO wt.% FeO + 6.2383 + 0.15336 wt.% Fe203 + 4.0114 wt.% MgO + 1.6328 wt.% MnO + 2.2442E-02 wt.% CrO + 5.8106E-02 wt.% Cr203 + 9.6847E-02 wt.% Ti203 + 15.773 wt.% TiO2 + 2.9364E-03 wt.% Mn2O3 + 3.4781E-03 wt.% SiS2 + 8,9846E-03 wt.% CaS + 9.8076E-04 wt.% FeS + 2.5652E-05 wt.% Fe2S3 + 7.2084E-04 wt.% MgS + 2.5731E-04 wt.% MnS + 3.5647E-06 wt.% CrS + 9.8331E-06 wt.% Cr2S3 + 1.6616E-05 wt.% Ti2S3 + 2.8419E-03 wt.% TiS2 + 4.9246E-07 wt.% Mn2S3

🐯 McGill CRCT

Montreal

2013

#### Solids are forming already (at 1600C) Slag in a BOF typically >100C hotter than melt

| + 6.7623E+06 gram a-Ca2SiO | 4         |
|----------------------------|-----------|
| (6.7623E+06 gram, 39391. ) | mol)      |
| (1600 C, 1 atm,            | a=1.0000) |
| (1.7890 wt.%               | Mg2SiO4   |
| + 97.731 wt.%              | Ca2SiO4   |
| + 0.28042 wt.%             | Mn2SiO4   |
| + 0.19931 wt.%             | Fe2SiO4   |
|                            |           |



Ferrous Processing 15

• Save all oxide products as streams

| (7                                                              | Reactar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nts - Equilib              | -                                                                                            |         |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|---------|
| File Edit Table Units Data                                      | Search Help<br>T(C) P(atm) En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erau(1) Mass(a) Vol(litre) |                                                                                              |         |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eigy(o) Mass(g) Vollade)   | _ <u>m</u> _                                                                                 |         |
| 1 - 4                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                              | 1       |
| Mass(g)<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100% | Species<br>[SlagA1600]<br>[Ca2Si041600]<br>[AMonoxide11600]<br>[AMonoxide21600]<br>[AMonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amonoxide21600]<br>[Amon | Phase T                    | P(total)***         Stream           1         1           2         3           4         4 | # Data  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | 🔲 Initial Con                                                                                | ditions |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Next >>                    |                                                                                              |         |
| FactSage 6.3 Compound: 4/                                       | 19 databases Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/19 databases             |                                                                                              | 1.      |



Ferrous Processing 16

WCGill CRCT

## Calculate at 1750C

| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Menu - Equilib:                                                                                                                                                                                                                                                                                                                                                                        | - 🗆 🗙                                                                                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| File       Units       Parameters       Help         Image: Strategy of the strategy of th |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    |  |  |
| Products         Compound species         * + gas ○ ideal ● real 43         aqueous       0         pure liquids       0         * + pure solids       201         ✓ suppress duplicates apply         * - custom selection         species:       244         Target         - none -         Estimate T(K):       1000         Mass(g):       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution species       Full Name         +       FTmisc-FeLQ       Fe-liq         I       FToxid-SLAGA       ASlag-liq all oxides + S         I       FToxid-MeO_A       AMonoxide         +       FToxid-bC2S       a'Ca2Si04         +       FToxid-aC2S       a-Ca2Si04         Legend       I       Show C all ● selected         I - immiscible 2       + selected 3       Select | Custom Solutions<br>0 fixed activities<br>0 ideal solutions<br>0 activity coefficients<br>Details<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |  |  |
| Final Conditions <a>       ID     steps       Table   FactSage 6.3</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T(C)       P(atm)       Product V(litre ▼         1750       1       C trai         1 calculation       1 calculation                                                                                                                                                                                                                                                                  | ibrium<br>mal © normal + transitions<br>nsitions only<br>en<br>Calculate >>                                                                                        |  |  |



Ferrous Processing 17

**McGill CRCT** 

| + 5.9733E+06 gram AMonoxide#1     |         |                               |
|-----------------------------------|---------|-------------------------------|
| (5.9733E+06 gram, 1.0588E+05 mol) |         |                               |
| (1750 C, 1 atm, a=1.0000)         |         |                               |
| (2.1965 wt.% FeO                  | FToxid  |                               |
| + 4.5933E-02 wt.% Fe2O3           | FToxid  | + 4.2593E+06 gram ASlag-liq#1 |
| + 76.999 wt.% CaO                 | FToxid  | (4.2593E+06 gram, 73209. mol) |
| + 7.1776 wt.% MgO                 | FToxid  | (1750 C, 1 atm, a=1.0000)     |
| + 13.455 wt.% MnO                 | FToxid  | ( 24.104 wt.% SiO2            |
| + 0.12513 wt.% Cr203              | FToxid  | + 55.966 wt.% CaO             |
| + 4.6990E-04 wt.% TiO2            | FToxid) | + 8.5096 wt.% FeO             |
|                                   |         | + 0.34639 wt.% Fe203          |
|                                   |         | + 4.6657 wt.% MgO             |
| + 1.7833E+06 gram AMonoxide#2     |         | + 2.7993 wt.% MnO             |
| (1.7833E+06 gram, 39352. mol)     |         | + 6.5583E-02 wt.% CrO         |
| (1750 C, 1 atm, a=1.0000)         |         | + 0.16459 wt.% Cr203          |
| ( 6.7838 wt.% FeO                 | FToxid  | + 8.9577E-02 wt.% Ti203       |
| + 4.2044E-02 wt.% Fe2O3           | FToxid  | + 3.2731 wt.% TiO2            |
| + 2.5646 wt.% CaO                 | FToxid  | + 1.1991E-02 wt.% Mn2O3       |
| + 73.913 wt.% MgO                 | FToxid  | + 1.0084E-03 wt.% SiS2        |
| + 16.301 wt.% MnO                 | FToxid  | + 1.9626E-03 wt.% CaS         |
| + 0.39407 wt.% Cr203              | FToxid  | + 2.8383E-04 wt.% FeS         |
| + 5.5205E-04 wt.% TiO2            | FToxid) | + 1.2292E-05 wt.% Fe2S3       |
|                                   |         | + 1.7788E-04 wt.% MgS         |
| + 4.2816E+06 gram a-Ca2SiO4       |         | + 9.3587E-05 wt.% MnS         |
| (4.2816E+06 gram, 24958. mol)     |         | + 2.2101E-06 wt.% CrS         |
| (1750 C, 1 atm, a=1.0000)         |         | + 5.9091E-06 wt.% Cr2S3       |
| ( 2.0871 wt.% Mg2SiO4             | FToxid  | + 3.2605E-06 wt.% Ti2S3       |
| + 97.460 wt.% Ca2SiO4             | FToxid  | + 1.2512E-04 wt.% TiS2        |
| + 0.30432 wt.% Mn2SiO4            | FToxid  | + 4.2666E-07 wt.% Mn2S3       |
| + 0.14828 wt.% Fe2SiO4            | FToxid) |                               |
|                                   |         |                               |

- Still a large amount of solid oxide
- Over-saturation of MgO and CaO



🐯 McGill CRCT

Montreal

- Ignore the current solid products
  - Take SlagA as a stream and determine melting T





McGill CRCT

Montrea

## **Multiple Temperatures**

| 47                                                       | Menu - Equilib: last system                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 🗆 🗙                                                                                                                                                                                                                                                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Units Parameters Help                               | T(C) P(atm) Energy(J) Mass(g) Vol(litre)                                                                                                                                                                                                                                                                                                                                                                                                                                   | III 📑 🕒 🕱                                                                                                                                                                                                                                                |
|                                                          | (gram) 100% [SlagA1750]                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |
| Products                                                 | - Colution appoint                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Custom Solutions                                                                                                                                                                                                                                         |
| Compound species<br>*                                    | Solution species         *       Base-Phase       Full Name         +       FTmisc-FeLQ       Fe-liq         I       FToxid-SLAGA       ASlag-liq all oxides + S         I       FToxid-MeO_A       AMonoxide         +       FToxid-bC2S       a'Ca2SiO4         +       FToxid-aC2S       a-Ca2SiO4         -       +       FToxid-aC2S         Legend       I       Show O all I selected         -       -       species: 83         -       solutions: 7       Select | O fixed activities     O fixed activities     O ideal solutions     O activity coefficients     Details      Pseudonyms     apply     List      include molar volumes <u>Total Species (max 1500)</u> 327 <u>Total Solutions (max 40)</u> 7      Default |
| Final Conditions<br><a> <b><br/>10 steps □ Table</b></a> | T(C)       P(atm)       Product V(litre ▼         1750 1600 10       1         16 calculations                                                                                                                                                                                                                                                                                                                                                                             | uilibrium<br>normal C normal + transitions<br>ransitions only<br>open<br>Calculate >>                                                                                                                                                                    |



Ferrous Processing 20

**McGill CRCT** 

## Plot Results of Solids Formed

#### 100% [SlagA1750]







**Ferrous Processing 21** 

WCGill CRCT

Montreal

## **Based on Criteria Select Temperature**



- Enter slag composition and temperature
  - Obtain viscosity



Ferrous Processing 22

🐯 McGill CRCT

Montreal