Case Study 9 Ferronickel production

Wan-Yi Kim

Dept. of Mining and Materials Eng., McGill Univ. wan-yi.kim@mcgill.ca Tel: 1-514-398-4455(ext.0334)

🐯 McGill CRCT

2013

Ferrous Processing 1

Ferronickel production

After removal of moisture from the laterite, char is added to react with calcined laterite.

Productions are Slag and Alloys(Fe-Ni).

After the calcination, the temperature of laterite is assumed as 500°C Char is assumed to be added at 100°C in the EAF and react at 1600°C

We are considering gas, slag and Fe-alloys in this case study.

Ferrous Processing 2

Determine the amount of reductant needed to produce Fe-Ni with 25% nickel Composition Target

Ferrous Processing 3

McGill CRCT

Reactants Window

Reactants - Equilib													
ile Edit Table Units Da	ita Search Help												
🗅 🗃 🕂 🏢 T(C) P(atm) Energy(J) Mass(g) Vol(litre) 👖 🗐 💽 😿													
1.10 11 14													
1 - 10 11 - 14													
Mass(g)	Species	Phase	T(C)	P(total)**	Stream#	Data							
8,1	FeO	solid-FactPS wustite 💌	500	1	1	FactPS							
+ 20,9	Fe203	solid-1-FT oxid hematit 💌	500	1	1	Toxid							
+ 43.8	Si02	solid-1-FT oxid quartz(I 💌	500	1	1	Toxid							
+ 6.4	AI203	solid-4-FT oxid corund 💌	500	1	1	Toxid							
+ 16.8	MgO	solid-FT oxid periclase 💌	500	1	1	Toxid							
+ 2.3	NiO	solid-FT oxid 💌	500	1	1	Toxid							
+ <4.8A>	AI203	solid-4-FT oxid corund 💌	100	1	2	Toxid							
+ <14A>	Si02	solid-1-FT oxid quartz(I 💌	100	1	2	Toxid							
+ <81.2A>	Al2O3: Mol. Wt. =	<mark>101.9612772</mark> β graphit ▼	100	1	2	FactPS							
+ 0.1	CaO	solid-FToxid lime 💌	500	1	1	Toxid							
					Initial Conditi	ons							
		Next >>											
ctSage 6.3 Compound:	3/19 databases Soluti	on: 2/19 databases											

Ferrous Processing 4

WCGill CRCT Montreal 2013

Data Search

q	Data Search				8 L.L.		×
	-Databases -	3/19 compour	nd databases, 2	/19 solution data	bases ———		
	Gact	GactSage"	SGTE	compounds only	ous		
	✓ FactPS			solutions only		🗌 SGTE#	🗆 SGTE*
	✓ FToxid	FSIead FSIite					
		FSstel	SGnobl	Clear All			
	FThall	FSnobl	SGsold	Select All			
				Add/Remove Data	-		
	Fineig	ELEM	Other		1		
	FTlite	FT demo	Direction TDnucl	RefreshDatabases			
	Information Click on a box t compound and (note, this is NC	- to include (or excl solution databasi)T recommended	ude) a database ir e (when available)).	n the data search. No will be selected. To	rmally databases a 'uncouple' a datab	re 'coupled' - tha ases click-mouse	t is both the eright-button
	If database is s	tored on your PC	but not listed here	then you must 'add th	ne database to the	list' - click on 'Ad	id/Remove'.
	0-6						
	options		de gaseous ions (plas	emas)	Limits	u⊔u ⊻(movi) –	
	Default		aqueous species		organic species C> Minimum solution o	omponents: ∩ 1	2 • 2 cots
			limited data compo	ounds (25C)			
	Canc	el		Summary			ОК

Ferrous Processing 5

McGill CRCT

Menu Window - Laterite + Char at 1600°C

存 Menu - Equilib: comments	14			
<u>F</u> ile <u>U</u> nits <u>P</u> arameters <u>H</u> elp				
	T(C) P(atm) Energy(J) Ma	ss(g) Vol(litre)	🚻 📑 🔁	
Reactants [14] (gram) 20.9 Fe + 8.1 (500C,s2-FSstel,#1) (500C,s1	Fe2D3 + 43.8 SiD2 -FToxid,#1) (500C,s1-FToxid,#1)	+ 6.4 Al2O3 + 1 (500C,s4-FT oxid,#1) (5000	16.8 MgO + IC,s-FToxid,#1) (50 ▶	
Froducts Compound species			Solutions	
★ gas ideal real 51 aqueou		Full Name	activities solutions Selection of Gas phases	
pure lique Gas 0 ★ pure solids 116	+ FSstel-FCC1 + FSstel-BCC1	Selection - Equilib - no results -	ity coefficients	٤
suppress duplicates apply * - custom selection	I FToxid-SLAGA ASIa	File Edit Show Sort	sales selected.	
species: 167	I FToxid-MeO_A		- no results -	
	+ FToxid-cPyrA A	Code Species D	Data Phase T V Activity Minimum Maximum	-
Composition target Element Ni - FSstel-LIQU Estimate ALPHA: 1 Mass(g): 0	Legend I - immiscible 4 C - composition target - element: Ni	1 U2(g) FS 2 Al(g) FS + 3 C(g) Fail + 4 C2(g) Fail + 5 C3(g) Fail + 6 C4(g) Fail	istel g g la	
		+ 7 C5(g) Far	actPS gas	
A> A> A> A>	T(C) P(atm) 1600 1	+ 9 02(g) Far + 9 02(g) Far + 10 03(g) Far + 11 CO(g) Far	actPS gas actPS	
10 steps Table		+ 12 C20(g) Fai + 13 C02(g) Fai + 14 C302(g) Fai	actPS gas actPS gas actPS gas	-
FactSage 6.3 C:\\Equ	uiReactor_Composition_Targe-10Ni-No1-	Show Selected Se	elect All Select/Clear Clear OK	

Ferrous Processing 6

McGill CRCT

Menu Window - Laterite + Char at 1600°C

File Units Parameters Help							
	T(C) P(atm) Energy	(J) Mass(g) Vol(litre)		👖 🞐 🕒 😿			
Reactants [14] (gram) 20.9 Fe + 8.1 F (500C,s2-FSstel,#1) (500C,s1-1	Fe2O3 + 43.8 SiO; FToxid,#1) (500C,s1-FTox	2 + 6.4 / id,#1) (500C,s4-i	Al2O3 + 16. FToxid,#1) (500C,s	8 MgO + -FToxid,#1) (50			
Products	- Solution species		Custom Solu	tions			
★		Full Name Liquid	O fixed act O ideal sol O activity o	ivities utions coefficients	lection o	f Solid p	hases
* + pure solids 116	+ FSstel-BCC1	BCC_	ection - Equilib - no resul	D-1-3- ts -			
* suppress duplicates apply * Pure solids 167	I FToxid-SLAGA I FToxid-SPINA I FToxid-Me0_A	ASlag-liq all ¢ File ASpir AMono Selecte	Edit Show Sort	Duplicates selected.	no results -		
	+ Floxid-cPyrA + FToxid-oPyr	Orthopyr	Code Species	Data Phase	T V Activity	Minimum	Maximum
Composition target Element Ni - FSstel-LIQU Estimate ALPHA: 1 Mass(g): 0	Legend I - immiscible 4 C - composition target - element: Ni	Show C all (+ species: 41 + solutions: 1(+ +	220 MnNi3(s) 221 Na2D(s) 222 Na2D(s2) 223 Na2D(s3) 224 MgD(s) 225 Al2D3(s)	FSstel mnni3_mnni3 FToxid solid-a FToxid solid-b FToxid solid-c FToxid periclase FToxid gamma	V		
Final Conditions	T(C) P(atm)		226 Al2U3(\$2) 227 Al2D3(\$3) 228 Al2U3(\$4) 229 NaAID2(\$) 230 NaAID2(\$2)	FToxid deita FToxid kappa FToxid corundum(alpha FToxid solid-a FToxid solid-b	5 V		
10 steps 🗖 Table		1 c + + +	231 NaAl9014(s) 232 Na2Al12019(s) 233 Si02(s)	FToxid beta-alumina FToxid beta2-alumina FToxid quartz(I)	V		
actSage 6.3 C:\\Equ	iReactor_Composition_Targe-10	Ni-No1-a.DAT	Show Selected	Select All Se	elect/Clear	Clear	ОК

Ferrous Processing 7

McGill CRCT

Menu Window - Laterite + Char at 1600°C

Menu - Equilib: comments	14	
<u>File Units Parameters H</u> elp		
	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	👖 📑 🔁 😿
Reactants [14] (gram) 20.9 Fe + 8.1 (500C,s2-FSstel,#1) (500C,s1	Fe2O3 + 43.8 SiO2 + 6.4 Al2O3 + -FToxid,#1) (500C,s1-FToxid,#1) (500C,s4-FToxid,#1)	16.8 MgO + (500C,s-FToxid,#1) (500
Products		
Compound species		stom Solutions
* + gas (* local (* lo	C Fase-Phase Full Name ▲ 0 C FSstel-LIQU LIQUID 0 + FSstel-FCC1 FCC_A1 + FSstel-BCC1 BCC_A2	ideal solutions activity coefficients
* - custom selection species: 167	I FToxid-SENA Astagrid all oxides + 3 I FToxid-SPINA ASpinel I FToxid-Me0_A AMonoxide + FToxid-cPyrA AClinopyroxene	eudonyms bly List
Composition target Element Ni - FSstel-LIQU	Legend I - immiscible 4 I -	<u>al Species (max 1500)</u> 584 al Solutions (max 40) 16
Estimate ALPHA: 1 Mass(g): 0	Selection of solutions	Default
Final Conditions	Equilib	rium
<a> 	T(C) P(atm) ▼ Delta H(J) ▼ © norma 1600 1 C transi C transi	al C normal + transitions
10 steps 🗖 Table	1 calculation	Calculate >>
FactSage 6.3 C:\\Eq	uiReactor_Composition_Targe-10Ni-No1-a.DAT	

Ferrous Processing 8

McGill CRCT

Menu Window – Composition Target

	🗘 Menu - Equilib: comments	14	
	<u>File Units Parameters H</u> elp		
		T(C) P(atm) Energy(J) Mass(g) Vol(litre)	11 🖳 🕞
	Beactants (14)	Composition Target	×
	Solution FSstel-LIQU	+ 43.8 SiO2 #1) (500C,s1-FToxid,# Solution ST53	LIQU Species
✓	 - clear - all species * - custom select species m - merge dilute solution from 	C species composition on species C Image: species composition Image: species composition Image: species composition Image: species compositition Image: species composition	Code numbers (568-586) Fe, C, Co, 568 Fe 💌
✓	 solution properties single phase possible 2-phase immiscibility possible 3-phase immiscibility 	+ FSstel-FCC1 + FSstel-FCC1 + FSstel-BCC1 I FToxid-SLAGA I FToxid-SPINA I FToxid-MeD_A + FToxid-CPyrA + FToxid-CPyrA	Element ments C O Mg Al Si Ca Cr Mn Fe Co N Element: Ni 🗨
 ✓ 	 standard stable phase dormant (metastable) phase f - formation target phase P - precipitate target phase S - Scheil cooling target phase D - soliDification calculation C - composition target 	nd miscible 4 proposition target ment: Ni T(C) P(atm) 1 Nore (removes targets)* Values Enter a single value - or enter a Element Ni [0.25] mass fraction: (25%)	a range of values 'first last step'
	Help FactSage 6.3 C:\\EquiReact	Cancel He	elp OK

Ferrous Processing 9

McGill CRCT

Results Window - Laterite + Char at 1600°C

Results - Equilib 1600 C A=0.038	1	
Output Edit Show Pages		
	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	11 💷 🖻 😿
		FactSage 6.3 🔺
(gram) 8.1 FeO + 20.9 Fe2	03 + 43.8 SiO2 + 6.4 Al2O3 +	
(500,1,s-FactPS,#1) (500,	1,s1-FToxid,#1) (500,1,s1-FToxid,#1) (500	,1,s4-FTox
(gram) 16.8 MgO + 2.3 NiC) + <4.8A> Al2O3 + <14A> SiO2 +	
(500,1,s-FToxid,#1) (500,	1,s-FToxid,#1) (100,1,s4-FToxid,#2) (100,	1,s1-FToxi
(gram) <81.2A> C + 0.1 Ca	$0 + 0.1 C_0 0 + 0.8 Cr203 +$	
(100,1,s1-FactPS,#2) (500	,1,s-FToxid,#1) (500,1,s-FToxid,#1) (500,	1,s-FToxid
(gram) 0.6 MnO2 + 0.3 Na2	0 =	
(500,1,s-FToxid,#1) (500,	1,s1-FToxid,#1)	
0.05750	-1	
0.25/52 moi gas_ide	al 1 20 502 litro 1 06025-04 gram(am2)	
(7.3500 gram, 0.25752 mc	== 1 0000)	
(1000 0, 1 atm,	C0	FactPS
+ 4 4912E-02	C02	FactPS
+ 6.1427E-05	Fe	FactPS
+ 3.8497E-05	Na	FactPS
+ 2.1527E-05	SiO	FactPS
+ 6.9777E-06	Ni	FactPS
+ 1.2003E-06	Mg	FactPS
+ 5.0642E-07	Mn	FactPS
+ 2.3065E-07	Co	FactPS
+ 1.6261E-07	FeO	FactPS
+ 1.0555E-07	Cr	FactPS
+ 3.7393E-08	SiO2	FactPS
+ 1.9781E-08	CrO	FactPS
+ 4.5947E-09	0	FactPS
+ 3.0436E-09	Cr02	FactPS
+ 1.4467E-09	NiO	FactPS
+ 3.8185E-10	02	FactPS

Laterite 100 g vs Char 0.0381 g Laterite 1 ton vs Char 0.381 kg

Ferrous Processing 10

McGill CRCT

存 Menu - Equilib: change of Ni w	th adding Char		
File Units Parameters Help			
	T(C) P(atm) Energy(J) №	Mass(g) Vol(litre)	🚻 📑 🐨
Reactants [14] (gram) 8.1 Fe0 + 20.9 (500C,s-FactPS,#1) (500C,s ⁻¹	Fe2D3 + 43.8 SiO2 -FToxid,#1) (500C,s1-FToxid,#1	+ 6.4 Al2O3) (500C,s4-FToxid,#1)	+ 16.8 MgD + (500C,s-FToxid,#1) (50
Products			
Compound species	Solution species	Full Name	Custom Solutions
aqueous 0	+ FSstel-LIQU + FSstel-FCC1	LIQUID FCC_A1	0 ideal solutions 0 activity coefficients
★ + pure solids 116 ✓ suppress duplicates apply	+ FSstel-BCC1 I FToxid-SLAGA A	BCC_A2	- Pseudonyms
* - custom selection species: 167	I FToxid-SPINA	ASpinel AMonoxide	apply 🗌 List
Tarad	+ FToxid-cPyrA + FToxid-oPyr	Orthopyroxene	Total Species (max 1500) 584
- none - Estimate ALPHA: 1	Legend I - immiscible 4 + - selected 8 spe	w Call 💿 selected	Total Solutions (max 40) 16
Mass(g): 0	solu	tions: 16 Select	Default
Final Conditions <a> 0 0.1 0.005	T(C) P(atm) -	Delta H(J)	arilibrium formal C normal + transitions ransitions only
10 steps Table		21 calculations	pen Calculate >>
FactSage 6.3 C:\\Ec	uiNo6-Fe-Ni_effect_on_Co_and_Cr_c	omposition.DAT	

Change of Char from 0 to 0.1g based on 100g Laterite Laterite 1 ton vs change of Char from 0 to 1 kg

Ferrous Processing 11

WCGill CRCT Montreal 2013

Output Edit Show Pages Save or Print T(C) P(atm) Energy(J) Mass(g) Vol(litre) Plot Plot Results Plot Plot Results Equilib Results file Repeat Plot - gram vs Alpha =0.045 A=0.05 A=0.055 Stream File PactSage 6.3 Plot Results Processor: C:\FactSage\Equilot.res FactSage 6.3 Plot Results Processor: C:\FactSage\Equilot.res Fact-XML Fact-XML Plot Result Plot - gram vs Alpha Repeat Plot - gram vs Alpha Plot A=0.05 A=0.05	
Save or Print T(C) P(atm) Energy(J) Mass(g) Vol(litre) Plot Plot Results Equilib Results file Repeat Plot - gram vs Alpha 0.045 A=0.05 A=0.055 Stream File Plot Asset Plot - gram vs Alpha 0.045 A=0.05 A=0.055 Format D3 + 43.8 Sit Results Processor: C:\FactSage\Equilo.res Fact-XML Plot Asset Plot - gram vs Alpha 0.045 A=0.05 A=0.055	
Plot Plot Results Equilib Results file Repeat Plot - gram vs Alpha Stream File Repeat Plot - gram vs Alpha Format D3 + 43.8 Siter Results Processor: C:\FactSage\Equilo.res Fact-XML -3 + 43.8 Siter Results Processor: C:\FactSage\Equilo.res Fact-XML -3 + 43.8 Siter Results Processor: C:\FactSage\Equilo.res	
Equilib Results file Repeat Plot - gram vs Alpha =0.045 A=0.05 A=0.055 Stream File Fact Sage 6.3 A=0.05 A=0.055 A=0.055 Format D3 + 43.8 Site Results Processor: C:\FactSage\Equi0.res Fact Sage 6.3 A=0.055 Fact-XML File Help A=0.055 A=0.055 Action Act	
Stream File FactSage 6.3 Format D3 + 43.8 Sit Results Processor: C:\FactSage\Equi0.res Fact-XML + <4.8A> A1; File Help + <4.8A> A1; File Help + <4.8A> A1; File Help + <4.8A> A1; File	
Format D3 + 43.8 Sit Results Processor: C:\FactSage\Equi0.res Fact-XML D3 + 43.8 Sit Results Processor: C:\FactSage\Equi0.res Fact-XML + <4.8A> A1; File Help 1, s=FToxid, #1 81 FeD + 20 9 Fe2D3 + 438 SiD2 + 64 Al2D3 +	
Format 1, s1-FToxid, # Fact-XML + <4.8A> A1 File Help 1, s-FToxid, #1 81 Fe0 + 20.9 Fe203 + 438 Si02 + 6.4 Al203 + •	1
Fact-XML + <4.8A> A1; File Help 1, s=FToxid, #1 81 Fe0 + 20.9 Fe203 + 43.8 Si02 + 6.4 A203 +	1
-, 3 - FIOXIG, +1	
b + 0.1 CoO	4
Fact-Optimal , 1, s-FToxid, #: Axes Variables Minimum	Maximum
D = activity 0	104.58
Fact-Function-Builder Fl,s1-FToxid,# mole 0	2.5887
mole fract. O	0.999983
Kerresn B1 gram O	99.429
(0.77004 gram, 2.40005 02 mb1, 3.7020 weight % ()	99.998
(1600 C, 1 atm, a=1:0000) Alpha 0	0.1
+ 2 3510E-04 0	1600.
Axes: weight % vs Alpha 1.	1.
Delta Cp(J) 19.62	82.696
Y-variable X-variable Swap Axes Delta G(J) -3.8924E+05	-2.7358E+05
Vol(litre) 0	0
- Y-avis Delta H(J) 1.7769E+05	3.1154E+05
Delta V(litr 3.702	101.96
Weight % Alpha Delta S(J) 152.43	277.68
• page • 1.	21.
maximum 100 maximum 0.1	
minimum 0 minimum 0 Display	
	🔲 full screen
tick every 5 tick every 0.01 Select Select	s 🔿 Viewer
· · · · · · · · · · · · · · · · · · ·	: 💽 Figure
C integer #	
Axes Select species and phases to be plotted.	Plot >>
Cancel Befresh	
FactSage 6.3 C:\FactSage\Equi0.res 6F	reb13 21 sets

GactSage[™]

Ferrous Processing 12

McGill CRCT

	Select								
#	Species	Gram (min)	Gram (max)	Wt.%	(min)	₩t.% (max)	Activity (min)	Activity (max)	
48	Cola	5.6271E-11	4.5397E-06	7.3018E	E-09	8.9375E-05	3.9645E-11	4.5347E-07	
49	Nila	2.4118E-08	2.3166E-04	3.12968	E-06	5.3523E-03	1.7062E-08	3.2792E-05	
50	NiO(a)	2.0065E-10	1.1828E-06	1.07828	E-09	4.2251E-05	4.0498E-12	2.3422E-07	
51	Ni(CO)4(a)	0	1.5441E-15	0		3.0551E-14	0	5.3505E-17	
FSste	I- LIQU								
52	Fe(LIQU)	0	20.715	2.225	Results	Processor: C:\FactS	age\Equi0.res		
53	C(LIQU)	0	0.172327	0 -	ila Llala				
54	Co(LIQU)	0	7.8630E-02	0.214	пе негр				
55	Cr(LIQU)	0	0.384669	3.429		8.1 Fe0) + 20.9 Fe2O3 + 43.	8 SiO2 + 6.4 Al2O3 +	•
56	AI(LIQU)	0	5.1829E-05	2.307	Axes	Variable		Minimum	Maximum
57	Mn(LIQU)	0	3.8302E-02	4.711		acti	vity	0	104.58
58	Ni(LIQU)	0	1.8073	7.319		ſſ	ole	0	2.5887
59	SI(LIQU)	0	1.4944	1.375		mole fr	act.	0	0.999983
60	Mg(LIQU)	0	9.3987E-07	6.518		g	am	0	99.429
61	O(LIQU)	0	9.6386E-03	4.271		weigh	lt %	0	99.998
62	AIO(LIQU)	0	1.6660E-06	3.131		Al	oha	0	0.1
63	AI20(LIQU)	0	1.4529E-09	2.600				1600.	1600.
64	CrO(LIQU)	0	3.5027E-04	3.473		Pla Dalha C	itmj - CD	10.00	l. 03.000
						Deita C Deita (P(J) S(D) -	13.02 3.892/F±05	-2 7358E±05
			—	s –		Vol(tre)	0	- <u></u>
				nole		Delta I	101	1.7769E+05	3.1154E+05
			🗆 [page] 🖉 🧿	Iram		Delta \	/(litr	3.702	101.96
CL						Delta	6(J)	152.43	277.68
			21 pages			- paj	je -	1.	21.
Click on t	he '+' column to add (or remove species.		F	Axes	Species	Grap	h Disp	lau
					0 selec	oted O sele	cted Labe		olor 🗌 full ser
						Cal	size	: 9 no: 4 🔽 r	eactants 🕜 Viewei
						Seit	· · · · ·	shemical 🛛 🔽 fi	ile name 🛛 📀 Figure
							O i	nteger #	
					Axe	^S Select species an	d phases to be plotte	ed. ₹	Plot >>

Ferrous Processing 13

With addition of Change the contents of Ni dissolved in liquid iron decrease. If then, what are amounts of Fe-Ni and Slag after each process?

Ferrous Processing 14

🐯 McGill CRCT

Montreal

Results - Equilib A=0 (page 1/2	1)				X	
Output Edit Show Pages Save or Print	T(C) P(atm	atm) Energy(J) Mass(g) Vol(litre) 👖 📑 🐺				
Plot	Plot Results					
Equilib Results file	Repeat Plot -	gram vs Alj	pha =0.04	45 A=0.05 A=0.055		
Stream File Format	D3 + 43.8 Si 1,s1-FToxid,#	Results Pro	ocessor: C:\FactSage\Equi0	FactSage 6	x	
Fact-XML	+ <4.8A> A1; ^F 1,s-FToxid,#1 0 + 0.1 Co0	lie Help	8.1 FeO + 20.9 Fe	e2O3 + 43.8 SiO2 + 6.4 Al2O3	+ 🔽	
Fact-Optimal	,1,s-FToxid,#:	Axes	Variables	Minimum	Maximum	
	D =		activity	0	104.58	
Fact-Function-Builder	1,s1-FToxid,#1		mole	0	2.5887	
Defeash			mole fract.	0	0.999983	
Refresh	B1 R mol 2 7020		gram	0	99.429	
(1600 C 1 atm	a=1 0000)		weight %	U	99.998	
(0,99973	02		Alpha	U 1000	U.1	
+ 2.3510E-04	0		D(also)	1600.	1600.	
Axes: gram vs Alpha			E Collina Coll	1962	02.000	
			Deita Op(i)	-3.8924E±05	-2 73585+05	
variable X-variable Swap Axes			Vol(litre)	-3.03246+03	0	
			Delta H(J)	1 7769E+05	3 1154E+05	
-Y-axis X-axis			Delta V(litr	3 702	101.96	
gram Alpha			Delta S(J)	152.43	277.68	
			- page -	1.	21.	
maximum 100 maximum 0.1 minimum 0 tick every 5 tick every 0.01		Axes O selected Axes	d Select Select species and phases t	Graph Labels size: 9 no: 4 ♥ ♥ C chemical ♥ o be plotted. ₽	play color ☐ full screen reactants C Viewer file name	
Cancel Refresh	OK Fa	actSage 6.3	C:\FactSage\Equi0.res		6Feb13 21 sets	

Ferrous Processing 15

7	Species Se	election - EQUILIB	Results: gram vs A	Alpha			840	-		×	
File	Show	Select									
	· #	Species	Gram (min)	Gram (m	ax) V	√t.% (min)	₩t.% (max)	Activity (min)	Activity (max		
		SOLUTIONS									
	585	GAS	0.770643	18.611	0)	0	1.	1.		
+	586	LIQU	0	24.691	0)	0	3.9934E-03	1.		
-	587	FLLT	0	0	0)	n	A 2980E-04	0.947531		
	588	BCC1	0	0	0	🍞 Results I	Processor: C:\FactSage	e\Equi0.res			×
+	589	SLAGA#1	66.898	99.429	0	File Heln					
	590	SLAGA#2	0	0	0						
	591	SPINA#1	0	0	0		8.1 FeO +	20.9 Fe2O3 + 43.8 S	i02 + 6.4 Al203 +	-	
	592	SPINA#2	0	0	0	Axes	Variables	Mi	nimum		4 aximum
	593	MeO_A#1	0	0	0		activity	,	0		104.58
	594	MeO_A#2	0	0	0		mole	•	0		2.5887
	595	сРугА	0	0	0		mole fract.		0		0.999983
	596	oPyr	0	0	0		gram	1	0		99.429
	597	pPyrA	0	0	0		weight %	:	0		99.998
	598	OlivA	0	0	0		Alpha	1	0		0.1
	599	MulF	0	0	0		T(C)	1	600. ·		1600.
	600	CORU#1	0	0	0		P(atm)		l.		1.
	601	CORU#2	0	0	0		Delta Up(J)		3.62 0045.05		82.696
_							Deita G(J) Volfikoj) -3.8)	0 0	-2	0
							Vol(iitie) Delta H(I)	17	0 769E±05		1154E±05
				source	Mass O mole		Delta V(litr	, i.i	702		101.96
							Delta S(J)	1!	52.43		277.68
				[[hage]	is gram		- page -		I.		21.
	Clea	ſ		21 pages		- Avae	Species	Granh			
Click on the '+' column to add or remove species.						O selec	ted 0 selecte			lay olor	full screen
							Select	size: 5 G che Citate	mical fi	eactants le name	 Viewer Figure
						Axe	Select species and p	hases to be plotted.) }	Plo	it >>
						FactSage 6.3	3 C:\FactSage\Eq	ui0.res		6Feb1	13 21 sets

Ferrous Processing 16

McGill CRCT

Ferrous Processing 17

WCGill CRCT Montreal

Ferrous Processing 18

Determine the liquidus temperatures of slag and alloy (Fe-25wt% Ni)

Stream / Precipitate Target

Ferrous Processing 19

The Gill CRCT

Liquidus Temp. of Alloy – Creating Stream file

4	Results - Equilib 1600 C, A=0.	0015					x
<u>0</u> u	t put <u>E</u> dit <u>S</u> how Pages						
	Save or Print Plot	;	T(C) P(atm) Energy(J) Mass(g) '	Vol(litre)		111 🖳 🖻	
	Equilib Results file	٠t			F	actSage 6.	3 🔺
	Stream File	•	Recycle all streams				
	Format	•	Save stream file	•	Save gas phase		
	Fact-XML	•	Stream file properties		Save pure liquids		
	Fact-Optimal	•	Summary of streams	•	Save aqueous Save pure solids		
	Fact-Function-Builder	•	Directory (C:\FactSage\)	_	Save solutions	• •	ALL solutions
	Refresh	3	mol, 1.3989 litre, 1.8501E-	04 gra	m/cm3)		FSstel-LIQU LIQUID
T	(0.97332	_	co		FactPS		FSstel-FCC1 FCC_A1
	+ 2.6511E-02		C02		FactPS		FSstel-BCC1 BCC_A2
	+ 7.4349E-05 + 4.6063E-05		re Na		FactPS		FToxid-SLAGA#1 ASlag-liq
	+ 4.2801E-05		SiO		FactPS		FToxid-SLAGA#2 ASlag-lig
	+ 2.6804E-06		Ni		FactPS		ETavid SDINA#1 ASsignal
	+ 2.0202E-06		Mg		FactPS		FT0xid-SPINA#1 ASpiner
	+ 8.5857E-07 + 2.0347E-07		Mn Cr		FactPS		FToxid-SPINA#2 ASpinel
	+ 1.1399E-07		FeO		FactPS		FToxid-MeO_A#1 AMonoxide
	+ 8.7497E-08		Co		FactPS		FToxid-MeO A#2 AMonoxide
	+ 4.3057E-08		SiO2		FactPS		
	+ 2.2085E-08		CrO		FactPS		FToxid-cPyrA AClinopyroxene
	+ 1 9679E-09		Cr02		FactPS		FToxid-oPyr Orthopyroxene
	+ 3.2184E-10		NiO		FactPS		FToxid-pPyrA AProtopyroxene
	+ 1.4791E-10		MgO		FactPS		
							FTOXID-UIIVA AUTIVINE
							FToxid-MulF Mullite
							FToxid-CORU#1 M2O3(Corundum)
							FToxid-CORU#2 M2O3(Corundum)

Ferrous Processing 20

McGill CRCT

Liquidus Temp. of Slag – Creating Stream file

Q	Results - Equilib 1600 C, A=0.	0015					×
<u>0</u>	Itput Edit Show Pages						
	Save or Print Plot	*	T(C) P(atm) Energy(J) Mass(g)	Vol(litre)		111 🖳 🕻	
	Equilib Results file	•			F	actSage 6	.3 .
	Stream File	►	Recycle all streams				
	Format		Save stream file	•	Save gas phase		
	Fact-XML	•	Stream file properties		Save pure liquids		
	Eact Ontimal		Summary of streams	•	Save aqueous		
	ract-optimal	_	Directory (C:\FactSage\)		Save pure solids		
	Fact-Function-Builder	٠h	1	_	Save solutions	+	ALL solutions
	Refresh		3 mol, 1.3989 litre, 1.8501E	-04 gra	m/cm3)		FSstel-LIQU LIQUID
Т	(0.97332		a=1.0000) CO		FactPS		FSstel-FCC1 FCC_A1
	+ 2.6511E-02		C02		FactPS		FSstel-BCC1 BCC_A2
	+ 7.4349E-05		Fe		FactPS		FToxid-SLAGA#1 ASlag-lig
	+ 4.6063E-05		Na		FactPS		ETavid SLACA#2 ASIan lin
	+ 2.6804E-06		Ni		FactPS		FToxid-SLAGA#2 ASiag-liq
	+ 2.0202E-06		Mg		FactPS		FToxid-SPINA#1 ASpinel
	+ 8.5857E-07		Mn		FactPS		FToxid-SPINA#2 ASpinel
	+ 2.0347E-07		Cr		FactPS		ETavid MaQ A#1 AManavida
	+ 1.1399E-07		FeO		FactPS		FT0xid=meO_A#1 Amonoxide
	+ 4.3057E-08		SiO2		FactPS		FToxid-MeO_A#2 AMonoxide
	+ 2.2085E-08		CrO		FactPS		FToxid-cPyrA AClinopyroxene
	+ 2.6610E-09		0		FactPS		FT ovid-oDyr Orthonyrovene
	+ 1.9679E-09		Cr02		FactPS		r toxid-or yr orthopyroxene
	+ 3.2184E-10		NiO M-O		FactPS		FToxid-pPyrA AProtopyroxene
	+ 1.4/51E-10				FactPS		FToxid-OlivA AOlivine
							EToxid-MulE Mullite
							FT-wid CORU#1 M202/Commenters)
							FToxia-COKU#1 M2O3(Corundum)
							FToxid-CORU#2 M2O3(Corundum)

Ferrous Processing 21

McGill CRCT

Liquidus Temp. of Alloy – Import Stream file

Ferrous Processing 22

WcGill CRCT Montreal 2013

Liquidus Temp. of Alloy – Precipitate Target

Q.	Reactant	ts - Equilib							X
<u>F</u> ile	<u>E</u> dit	<u>T</u> able <u>U</u> nits	<u>D</u> ata Search	<u>H</u> elp					
	2	+		T(C) P(atm)	Energy(J) Mass(g)) Vol(litre)		III 🖳	釆
-									
	1.1								1
				C		T(C)		C1# D-1	
	10	Mass(g)	[FSste	Species	Stream		P(total)-		a
	1.0				Lougan!	1,000	1.		
								Initial Conditions	
					Nout				
					Nex(>>				

Ferrous Processing 23

McGill CRCT

Liquidus Temp. of Alloy – Precipitate Target

存 Menu - Equilib: Steel Cooling	14	
<u>File Units Parameters Help</u>	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	M 🗩 🖻 😿
	(gram) 100% [FSstel-LIQU_LIQUID] (1600C,liq,#1)	Solution FSstel-LIQU - clear
Products Compound species ★ + gas ideal real 48 aqueous 0 pure liquids 0 * + pure solids 109 suppres Click mourse-right	Solution species * Base-Phase Full Name P FSstel-LIQU LIQUID + FSstel-FCC1 FCC_A1 + FSstel-BCC1 BCC_A2 buttor to open Selection Window for ESstel-ECC1	 - all species * - custom select species m - merge dilute solution from - solution properties + - single phase
* - custom selection species: 157		 I - possible 2-phase immiscibility J - possible 3-phase immiscibility - standard stable phase
FSstel-LIQU Estimate T(C): 1000 Mass(g): 0	P - precipitate target + - selected 2 Show ○ all ⓒ selected species: 55 solutions: 3	 ! - dormant (metastable) phase F - formation target phase P - precipitate target phase
Final Conditions <a> Image: A interval of the steps 10 steps	T(C) P(atm) ▼ Delta H(J) ▼ 1 1 calculation	 S - Scheil cooling target phase D - soliDification calculation C - composition target
FactSage 6.3 C:\FactS	age\EquiSteel-cooling-No2-b.DAT	Help

Ferrous Processing 24

McGill CRCT

Liquidus Temp. of Alloy – Precipitate Target

🕞 Results - Equilib 1599.96 C		
Output Edit Show Pages		
	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	M 🖳 🔁 😿
		FactSage 6.3
(1600,1,liq,#1)	-	
0 mol gas_ideal		
(1599.96 C, 1 atm,	a=1.0000)	
(0.95499 CO	Fa	ctPS
+ 4.4922E-02 CO2	Fa	ctPS
+ 6.1399E-05 Fe	Fa	ctPS
+ 2.1523E-05 SiO	Fa	ctPS
+ 6.9743E-06 Ni	Fa	ctPS
+ 1.2001E-06 Mg	ra T-	etPS
+ 5.062/E-0/ Mn	11 7-	etPS
+ 1 6255E-07 E-0	11 7-	et DS
+ 1.0255E-07 Fe0	11 7-	et DS
+ 3 73907-08 5102	ra Fa	ot DS
+ 1 9775E-08 Cr0		ct DS
+ 4 59268-09 0	Fa	ctPS
+ 3 0432E-09 Cr02	Fa	ctPS
+ 1.4459E-09 NiO	Fa	ctPS
+ 3.8173E-10 O2	Fa	ctPS
+ 1.5170E-10 MgO	Fa	ctPS
+ 1.3795E-12 Cr03	Fa	ctPS
+ 1.0866E-12 Si	Fa	ctPS
+ 8.4551E-13 Al	Fa	ctPS
+ 7.5318E-13 AlO	Fa	ctPS
+ 4.7334E-13 C20	Fa	ctPS
+ 3.4142E-13 Ca	Fa	ctPS
+ 1.7660E-13 C302	Fa	ctPS +
J		

Ferrous Processing 25

McGill CRCT

Liquidus Temp. of Slag – Import Stream file

Ferrous Processing 26

🐯 McGill CRCT

Montreal

Liquidus Temp. of Slag – Precipitate Target

<u>File Edit Table Units</u>	<u>D</u> ata Search <u>H</u> elp	
D 🗃 🕂 💷	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	11 📑 📑 🧃
1-1		
Mass(g)	Species Phase T(C)	P(total)** Stream# Data
1100/6		
		Initial Conditions
		,
	Nort >>	
	Next >>	

Liquidus Temp. of Slag – Precipitate Target

存 Menu - Equilib: Slag cooling	14 1	
File Units Parameters Help	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	
Reactants (1)		Solution FToxid-SLAGA
	(gram) 100% [FToxide_Slag] (1600C,#1)	- clear
Products		* - custom select species
Compound species	- Solution species	m - merge dilute solution from
* ∓ gas ⊙ ideal ⊂ real 34	🕴 + Base-Phase 🛛 Full Name 🔺	solution properties
aqueous 0	IP FToxid-SLAGA ASIaq-lig all oxides + S	- solution properties
pure liquids 0	I FToxid-SPINA ASpinel	L single phase
* + pure solids 114	I FToxid-MeO A AMonoxide	+ - single phase
E suppress duplicates, applu		 I - possible 2-phase immiscibility
suppress adplicates apply	+ EToxid-oPur Orthopurovene	L - nossible 3-nbase immiscibility
species: 148	+ FT oxid-oPurA AProtopyroxene	y possible y pruse inimiseibility
		- standard stable phase
" * " denotes custom selectio	on - not all the species have been selected.	
- Precipitate Target-		! - dormant (metastable) phase
FToxid-SLAGA	Legend Show C all Selected	F - formation target phase
Estimate T(C): 1000	P - precipitate target	P - precipitate target phase
Manufalt 0	+-selected 2 solutions: 16	
Mass(g). Jo		5 - Schell cooling target phase
- Final Conditions		D - soliDification calculation
	T(C) P(atm) 💌 Delta H(J) 💌	C - composition target
	1	Help
10 steps Table	1 calculation	Calculate >>
FactSage 6.3 C:\FactSag	ge\EquiSlag-cooling-No2-a.DAT	

Ferrous Processing 28

McGill CRCT

Liquidus Temp. of Slag – Precipitate Target

存 Results - Equilib 1380.48 C			1	
Output Edit Show Pages				
	T(C) P(atm) Energy(J	I) Mass(g) Vol(litre)		11 🖳 🕞 😿
	3.82072-05	7 100CF_05		A
E E	2.73852-03	0 17447		
Mn	1 73208-03	4 23838-03		
Cr	2 62618-03	6 0820E-03		
Ca	4 4773E-04	7 9926E-04		
Si	0.18525	0.23174		
Al	3.2420E-02	3.8963E-02		
Mg	0.10466	0.11330		
Na	2.4281E-03	2.4864E-03		
0	0.60023	0.42775		
+ 0 gram A01 (1380.48 C, (37.233) + 5.1126 + 12.725 + 23.821 + 3.5553E-10 + 1.1064E-03 + 1.6546E-06 + 5.0756E-03 + 4.0547E-06 + 1.4338E-03 + 3.5096E-08 + 1.4617E-05 + 7.6010E-07 + 1.1247E-05 + 9.6934E-05 + 1.1400E-02	<pre>ivine#1 1 atm, a=1.0000) wt.% Mg1Mg1S1104 wt.% Fe1Fe1Si104 wt.% Fe1Mg1Si104 wt.% CalCalSi104 wt.% CalFe1Si104 wt.% CalMg1Si104 wt.% CalMg1Si104 wt.% Mg1CalSi104 wt.% Mn1Mn1Si104 wt.% CalMn1Si104 wt.% ColColSi104 wt.% ColColSi104 wt.% Mn1ColSi104 wt.% Mg1ColSi104 wt.% Mg1ColSi104</pre>		FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid FToxid	

Ferrous Processing 29

McGill CRCT

Show the impact of the SiO₂/MgO (in the range of 1 to 4) ratio on the liquidus temperature of the slag (Primary crystallization phase) Stream / Precipitate Target

Ferrous Processing 30

🐯 McGill CRCT

Addition of 0.381 kg of Char with 1 tone of Laterite SiO₂+MgO = 60.6 wt%

≆ + <u>m</u>	T(C) P(al	tm) Energy(J) Mass(g) Vol(litre	:)		111 -	🤋 🖻
10 11 - 14						
Mass(g)	Species	Phase	T(C)	P(total)**	Stream#	Data
8,1	FeO	solid-FactPS wustite 💌	500	1	1	FactP9
20,9	Fe203	solid-1-FT oxid hematit 💌	500	1	1	FToxid
<60.6-A>	SiO2	solid-1-FToxid quartz(I 💌	500	1	1	FToxid
6.4	AI203	solid-4-FToxid corund 💌	500	1	1	FToxid
A>	MgO	solid-FToxid periclase 💌	500	1	1	FToxid
2.3	NiO	solid-FT oxid 🗨	500	1	1	FToxid
<4.8B>	AI203	solid-4-FT oxid corund	100	1	2	FToxid
<14B>	Si02	solid-2-FT oxid quartz(ł 💌	100	1	2	FToxid
<81.2B>		solid-1-FactPS_graphit 💌	100	1	2	FactP9
0.1	CaO	solid-FT oxid lime	500	1	1	FToxid
				~	Initial Condi	tions
			_		_	

Ferrous Processing 31

🐯 McGill CRCT

Montreal

MgO = 12.12 to 30.3 wt% $SiO_2/MgO = 1 \text{ to } 4 \text{ ratio}$

Menu - Equilib: 37 Calculations		
<u>File Units Parameters H</u> elp		
	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	🚻 📑 🐼
Reactants [14] <60.6-A> SiO2 + 6.4 // (500C,s1-FToxid,#1) (500C,s4- ▲	Al2O3 + <a> MgO + 2.3 NiO FToxid,#1) (500C,s-FToxid,#1) (500C,s-FToxid,#1)	+ <4.88> Al2O3 + < (100C,s4-FT oxid,#2) (100(
Products		- Custom Solutions
★ + gas ideal real 51 aqueous 0 pure liquids 0 + pure solids 116 suppress duplicates apply * - custom selection species: 167 Target - none - Estimate T(C): 1000 Mass(g): 0	Image: species Full Name Image: species FSstel-Phase Full Name Image: species FSstel-FCC1 FICC_A1 Image: species FT oxid-SLAGA ASlag-liq all oxides + S Image: species Image: species FT oxid-SPINA Image: species FT oxid-OPyr Orthopyroxene Image: species 41 FT oxid-OPyr Image: species 417 Select	0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply □ List □ include molar volumes <u>Total Species (max 1500)</u> 584 <u>Total Solutions (max 40)</u> 16
- Final Conditions		quilibrium
A> 12.12 30.3 0.5	I(U) P(atm) ▼ Delta H(J) ▼ © 1600 1 0<	normal C normal + transitions transitions only
FactSage 6.3	37 calculations	Calculate >>

Ferrous Processing 32

WCGill CRCT Montreal 2013

Results - Equilib A=12.12 (page 1/38)							
Output Edit Show Pages							
D 🖻 🖾 🚮 🗴	T(C) P(atm) Energy(J) Mass(g) Vol(litre)	III 🖳 🔁 😿					
A=24.12							
A=18.12 A=18.62 A=19.12 A=19	.62 A=20.12 A=20.62 A=21.12 A=21.62 A=22.12	A=22.62 A=23.12 A=23.62					
A=12.12 A=12.62 A=13.12 A=13.62 A=14.12 A=14.62 A=15.12 A=15.62 A=16.12 A=16.62 A=17.12 A=17.62							
		FratSam (2					
(gram) 20 9 Fe + 8 1 Fe203	+ <60 6-A> SiO2 + 6 4 A12O3 +	ractbage 6.5					
(500.1.s2-FSstel.#1) (500.	1.s1-FToxid.#1) (500.1.s1-FToxid.#1) (500.)	1.94-FT0					
(gram) <a> MgO + 2.3 NiO +	<4.8(0.0015) > A1203 + <14(0.0015) > Si02	+					
(500,1,s-FToxid,#1) (500,1	<pre>s-FToxid,#1) (100,1,s4-FToxid,#2) (100,1,</pre>	s2-FToxi					
(gram) <81.2(0.0015)> C +	0.1 CaO + 0.1 CoO + 0.8 Cr2O3 +						
(100,1,s1-FactPS,#2) (500,	1,s-FToxid,#1) (500,1,s-FToxid,#1) (500,1,	s-FToxid					
(gram) 0.6 MnO2 + 0.3 Na20	=						
(500,1,s-FToxid,#1) (500,1	,s1-FToxid,#1)						
	_						
9.2135E-03 mol gas_idea							
(0.26153 gram, 9.2135E-03	mol, 1.4162 litre, 1.8467E-04 gram/cm3)						
(1600 C, 1 atm,	a=1.0000)	East DC					
(0.57654 + 2.2204E-02	C0	FactPS					
+ 7 43068-05	Fa	Fact DS					
+ 6 5345E-05	sio	FactDS					
+ 3.1435E-05	Na	FactPS					
+ 2.6810E-06	Ni	FactPS					
+ 1.3820E-06	Mg	FactPS					
+ 8.1622E-07	Mn	FactPS					
+ 2.1625E-07	Cr	FactPS					
+ 9.9725E-08	FeO	FactPS					
+ 8.7642E-08	Co	FactPS					
+ 5.7545E-08	SiO2	FactPS					
+ 2.0547E-08	CrO	FactPS					
+ 2.3294E-09	0	FactPS					
+ 1 6028E-09	Cr02	FactPS					

37 different Slags and Alloys are formed with change of SiO₂/MgO at 1600°C.

McGill CRCT

Montreal 2013

Ferrous Processing 33

🖓 R	esults - Equilib A=12.12 (pa	e 1/38)	
Out	out <u>E</u> dit <u>S</u> how Pages		
	Save or Print	Save or Print As litre)	111 🖳 🕒 😿
	Plot	Repeat Open Spreadsheet	
	Equilib Results file	▶ 9.62 A=20.12 A=20.62 A=21.12 A=21.62 A=22.12 A=22.62	2 A=23.12 A=23.62
	Stream File	52 A=14.12 A=14.62 A=15.12 A=15.62 A=16.12 A=16.62	A=17.12 A=17.62
	Format	+ <60 6-3> Si02 + 6 4 31203 +	FactSage 6.3 🔺
	Fact-XML	<pre>, 1, s1-FToxid, #1) (500, 1, s1-FToxid, #1) (500, 1, s4-FT + <4.8(0.0015)> Al203 + <14(0.0015)> Si02 +</pre>	.o
	Fact-Optimal	<pre>1,s-FToxid,#1) (100,1,s4-FToxid,#2) (100,1,s2-FTox 0.1 CaO + 0.1 CoO + 0.8 Cr2O3 +</pre>	ri
	Fact-Function-Builder	<pre>,1,s-FToxid,#1) (500,1,s-FToxid,#1) (500,1,s-FToxi) =</pre>	.d
	Refresh	1,s1-FToxid,#1)	
	9.2135E-03 mol gas_	deal	
	(0.26153 gram, 9.2135	-03 mol, 1.4162 litre, 1.8467E-04 gram/cm3)	
	(1600 C, 1 at (0 97654	(, a=1.0000)	,
	+ 2 3284E-02	CO2 Fact PS	
	+ 7.4306E-05	Fe FactPS	
	+ 6.5345E-05	SiO FactPS	5
	+ 3.1435E-05	Na FactPS	3
	+ 2.6810E-06	Ni FactPS	3
	+ 1.3820E-06	Mg FactPS	5
	+ 8.1622E-07	Mn FactPS	5
	+ 2.1625E-07	Cr FactPS	5
	+ 9.9725E-08	FeO FactPS	3
	+ 8.7642E-08	Co FactPS	5
	+ 5.7545E-08	SiO2 FactPS	5
	+ 2.0547E-08	CrO FactPS	5
	+ 2.3294E-09	0 FactPS	-
	+ 1 6028E-09	CrO2 FactPS	·

To export wt% of SiO₂ and MgO in Slag phase

Ferrous Processing 34

WCGill CRCT Montreal 2013

Output	×	🕞 Spi	eadshe	et - Equilib Page	38/38 : T((c) = 1600, P(atr	n) = 1,	Alpha = 30.3			x
Page Range	Type of Output	File	Edit S	how							
 All 38 pages 	C Printer Printer setup	Select	od: 2/50	2 Spreadshe	ot Species	1		38		- 38 🔽 (pag	el
C Current page 1	◯ Text file (*.txt)		Selected: 2/302 Spreadsheet Species 100 Images 110 110 Images 110 110 110 110 110 110 110 110 110 110 110 110 110 110 1								
	C Equilib Results File (Equi*.res)	+	Code	Species	Data	Phase	τv	Activity	Minimum	Maximum	
			1050	Na2O(SLAGA) Al2O3(SLAGA)	FToxid	FToxid-SLAGA		1.8600E-10 3.3995E-03	1.6164E-12 [1] 2.9345E-04 [3]	1.8600E-10 [38] 3.3995E-03 [38]	
	Copen Text Spreadsheet Spreadsheet setup	+	1052	SiO2(SLAGA)	FToxid	FToxid-SLAGA		6.8588E-02	6.8588E-02 [38]	0.8134 [1]	
	C Save Text Spreadsheet		1053	NaAlO2(SLAGA) CaO(SLAGA)	FToxid	FToxid-SLAGA		8.5125E-06	1.8802E-08 [1] 3.7994E-07 [1]	8.5125E-06 [38]	1
	Swap rows & columns		1055	FeO(SLAGA)	FToxid	FToxid-SLAGA		0.2781	0.1157 [1]	0.2781 [38]	
Cancel	ОК	+	1050	MgO(SLAGA)	FToxid	FT oxid-SLAGA		4.4240E 05 8.0697E-02	9.2915E-03 [1]	4.4240E 05 [30] 8.0697E-02 [38]	
			1058		Floxid	FT oxid-SLAGA		3.2034E-05	1.3708E-05 [1]	3.2034E-05 [38]	
preadsheet Setup	•		1059	MiD(SLAGA) MnO(SLAGA)	FToxid	FToxid-SLAGA FToxid-SLAGA		2.1544E-03	5.0847E-05 [1] 5.9400E-04 [1]	2.1544E-03 [38]	
System Properties			1061	CrO(SLAGA)	FToxid	FT oxid-SLAGA		1.4742E-02	9.8533E-03 [1]	1.4973E-02 [36]	
-,	Property columns 2		1062	Mn203(SLAGA)	FToxid	FToxid-SLAGA		3.3823E-04 3.7091E-10	1.1765E-11 [1]	3.7091E-10 [38]	-
Column: - 1 - Variable: Alpha	-2- T(C)	+'d	enotes al	I the Species Propert	ies as defin	ed in the Spreads	heet Se	etup.		_	
				Select	All		Clear		OK		
- Species Properties Columns per species 1	C order species order props.	Column	s: 4								
Column:	Select Species: 2	Cano Defa	el ult								

Ferrous Processing 35

McGill CRCT

-										
Fi	le Edit Swar	p rows and colum	ns							
Γ	Alpha	T(C)	Wt%-SiO2(SLAGA#1)	Wt%-MgO(SLAGA#1)	Wt%-SiO2(SLAGA#2)	Wt%-MgO(SLAGA#2)				
	1.2120000E+01	1.6000000E+03	5.9104840E+01	1.4772695E+01	5.9104840E+01	1.4772695E+01				
	1.2620000E+01	1.600000E+03	5.8497349E+01	1.5382513E+01	5.8497349E+01	1.5382513E+01				
	1.3120000E+01	1.600000E+03	5.7889996E+01	1.5992402E+01	5.7889996E+01	1.5992402E+01				
	1.3620000E+01	1.600000E+03	5.7282768E+01	1.6602366E+01	5.7282768E+01	1.6602366E+01				
	1.4120000E+01	1.600000E+03	5.6675654E+01	1.7212408E+01	5.6675654E+01	1.7212408E+01				
	1.4620000E+01	1.600000E+03	5.6068642E+01	1.7822534E+01	5.6068642E+01	1.7822534E+01				
	1.5120000E+01	1.600000E+03	5.5461721E+01	1.8432746E+01	5.5461721E+01	1.8432746E+01				
	1.5620000E+01	1.600000E+03	5.4854884E+01	1.9043049E+01	5.4854884E+01	1.9043049E+01				
	1.6120000E+01	1.600000E+03	5.4248124E+01	1.9653448E+01	5.4248124E+01	1.9653448E+01				
	1.6620000E+01	1.600000E+03	5.3641436E+01	2.0263948E+01	5.3641436E+01	2.0263948E+01				
	1.7120000E+01	1.600000E+03	5.3034815E+01	2.0874555E+01	5.3034815E+01	2.0874555E+01				
	1.7620000E+01	1.600000E+03	5.2428259E+01	2.1485276E+01	5.2428259E+01	2.1485276E+01				
	1.8120000E+01	1.600000E+03	5.1821769E+01	2.2096119E+01	5.1821769E+01	2.2096119E+01				
	1.8620000E+01	1.600000E+03	5.1215345E+01	2.2707092E+01	5.1215345E+01	2.2707092E+01				
	1.9120000E+01	1.600000E+03	5.0608990E+01	2.3318205E+01	5.0608990E+01	2.3318205E+01				
	1.9620000E+01	1.600000E+03	5.0002708E+01	2.3929470E+01	5.0002708E+01	2.3929470E+01				
	2.0120000E+01	1.600000E+03	4.9396507E+01	2.4540898E+01	4.9396507E+01	2.4540898E+01				
	2.0620000E+01	1.600000E+03	4.8790393E+01	2.5152504E+01	4.8790393E+01	2.5152504E+01				
	2.1120000E+01	1.600000E+03	4.8184375E+01	2.5764304E+01	4.8184375E+01	2.5764304E+01				
	2.1620000E+01	1.600000E+03	4.7578465E+01	2.6376315E+01	4.7578465E+01	2.6376315E+01				
	2.2120000E+01	1.600000E+03	4.6972673E+01	2.6988559E+01	4.6972673E+01	2.6988559E+01				
	2.2620000E+01	1.600000E+03	4.6367012E+01	2.7601056E+01	4.6367012E+01	2.7601056E+01				
	2.3120000E+01	1.600000E+03	4.5761495E+01	2.8213831E+01	4.5761495E+01	2.8213831E+01				
	2.3620000E+01	1.600000E+03	4.5156135E+01	2.8826909E+01	4.5156135E+01	2.8826909E+01				
	2.4120000E+01	1.6000000E+03	4.4550942E+01	2.9440317E+01	4.4550942E+01	2.9440317E+01				

Copy and paste in Excel file and then, you can calculate the ratio of SiO₂/MgO in Slag Impossible to draw as a function of SiO₂/MgO in FactSage

Equilib Results

Ferrous Processing 36

Save or Print Plot	T(C) P(atm) Energy(J) Mass(g) Vol(litr	e) <u>I</u>	1 🖳 🖻 😿	Create 37 stream files for Slag
Equilib Results file	9.62 A=20.12 A=20.62 A=21.12 A=21.0	52 A=22.12 A=22.62 A=2	3.12 A=23.62	nhases
Stream File	Recycle all streams	A=16.12 A=16.62 A=17.7	12 A=17.62 '	phacee
Format 🕨	Save stream file	Save gas phase	6.3 🔺	
Fact-XMI	Stream file properties	Save pure liquids		
, act Ame	Summer of streams	Save aqueous		
Fact-Optimal	Summary of streams	Save pure solids		
East Eurotian Builder	Directory (C:\FactSage\)	Save solutions		lutions
Fact-Function-Builder	p =	5472 301410113	ALL SU	
Refresh	1,s1-Floxid,#1)		F5stel-	
9.2135E-03 mol gas ide	Pal		FSstel	-FCC1 FCC_A1
(0.26153 gram, 9.2135E-0	03 mol, 1.4162 litre, 1.8467E-04 g	ram/cm3)	F Sstel-	-BCC1 BCC A2
(1600 C, 1 atm,	a=1.0000)			
(0.97654	co	FactPS	Floxic	I-SLAGA#1 ASlag-liq
+ 2.3284E-02	C02	FactPS	FToxic	I-SLAGA#2 ASlag-lig
+ 7.4306E-05	Fe	FactPS		
+ 6.5345E-05	SiO	FactPS	Floxic	I-SPINA#1 ASpinel
+ 3.1435E-05	Na	FactPS	FToxic	I-SPINA#2 ASpinel
+ 2.6810E-06	Ni	FactPS		
+ 1.3820E-06	Mg	FactPS	FToxic	I-MeO_A#1 AMonoxide
+ 8.1622E-07	Mn	FactPS	FToxic	I-MeO A#2 AMonoxide
+ 2.1625E-07	Cr	FactPS		
+ 9.9725E-08	FeO	FactPS	FToxic	I-cPyrA AClinopyroxene
+ 8.7642E-08	Co	FactPS	FToxic	l-oPyr Orthonyrovene
+ 5.7545E-08	5102	FactPS	TTOAL	-or yr orthopyroxene
+ 2.0547E-08	Cro	FactPS	FToxic	I-pPyrA AProtopyroxene
+ 1 6028E-09	Gr02	FactPS	FToxic	I-OlivA AOlivine
			Floxic	1-MulF Mullite

Ferrous Processing 37

FToxid-CORU#2 M2O3(Corundum)

🐯 McGill CRCT

Montreal

Re Re	actants	- Fauilib						3	FSstel-LIQU LIQUID stream
Eile .		Table Unite Date	- Saarah Hala					4	FToxide Slag stream
		dd a new Desetent	a search <u>H</u> eip	Child	D	bl(litre)		5	Slag with A=12.12 stream
	A	dd a new Keactant		Ctri+i	ĸ	Di(iide)		6	Slag with A=12.62 stream
	In	isert new reactant b	etore					7	Slag with A=13.12 stream
	D	elete reactant						8	Slag with A=13.62 stream
Г	D	elete all blank react	ants					9	Slag with A=14.12 stream
	M	lixtures and Streams	S		•	Import a mixture	•	1	0 Slag with A=14.62 stream
	Re	e-order the reactant	ts		•	Import a stream (or single-lin	ne mixture) 🔹 🕨	1	1 Slag with A=15.12 stream
	Ex	port list of reactant	ts		•	Edit a mixture or stream	•	1	2 Slag with A=16.12 stream
	In	nport list of reactan	ts		•	Directory (C:\FactSage\)		1	3 Slag with A=16.62 stream
	c	lear			-1			1	4 Slag with A=17.12 stream
	Ex	rample						1	5 Slag with A=18.12 stream
		ampic						1	6 Slag with A=19.12 stream
								1	7 Slag with A=20.12 stream
								1	8 Slag with A=21.12 stream
								1	9 Slag with A=22.12 stream
								2	0 Slag with A=23.12 stream
								2	1 Slag with A=24.12 stream
								2	2 Slag with A=25.12 stream
						🔽 Initial Co	nditions	2	3 Slag with A=26.12 stream
								2	4 Slag with A=27.12 stream
				Next >>				2	5 Slag with A=28.12 stream
5			Molet					2	6 Slag with A=29.12 stream
FactS	age 6.3	Compound: 3	3/19 databases	Solution: 2719 datab	ases			2	7 Slag with A=30.12 stream
Select each stream and calculate liquidus temp									8 Slag with A=30.3 stream
		001001		na (Procini	4-14	o Torgot'	···· P· ·	S	ilag FToxid-SLAGA#1 stream
		S	Steel FSstel-LIQU stream						

Ferrous Processing 38

Menu - Equilib: 37 calculations								
File Units Parameters Help T(C) P(atm) Energy(J) Mass(g) Vol(litre) Reactants (1) Image: Comparison of the second seco								
Products Compound species * + gas • ideal • real 34 aqueous 0 pure liquids 0 * + pure sol Click mouse-right-b suppress duplicates apply * - custom selection species: 148 Precipitate T arget FT oxid-SLAGA Estimate T(C): 1000 Mass(g): 0	Solution species	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes <u>Total Species (max 1500)</u> 582 <u>Total Solutions (max 40)</u> 15 Default						
Final Conditions <a> 10 steps Table FactSage 6.3 C:\FactSage	T(C) P(atm) Delta H(J) 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	quilibrium normal						

Ferrous Processing 39

McGill CRCT

Q	Results	- Equilib 1468.09 C			1000	
0	utput	<u>E</u> dit <u>S</u> how Pages				
[0	Em ber f	T(C) P(atm) E	inergy(J) Mass(g) Vol(litre)		111 🞐 🕒 😿
		+ 29.353 w + 0.27335 w + 1.45748-02 w	t.% Fe1Cr204 t.% Cr1Cr204		FToxid FToxid	*
		+ 9.0725E-03 w + 9.0725E-02 w + 2.5892E-03 w	t.% Cr1Al204 t.% Cr1Al204 t.% Co1Al204		FToxid FToxid	
		+ 4.1180E-05 w + 8.9999E-11 w + 3.4195E-07 w	t.% Co1Fe2O4 t.% Co1Co2O4 t.% Fe1Co2O4		FToxid FToxid FToxid	
		+ 3.1984E-03 w + 5.0886E-05 w	t.% Ni1Al2O4 t.% Ni1Fe2O4		FToxid FToxid	
		+ 5.3608E-07 w + 7.7316E-03 w + 9.5535E-03 w	t.% Mg1Co2O4 t.% Co1Cr2O4 t.% Ni1Cr2O4		FToxid FToxid FToxid	
		+ 1.1121E-10 w + 3.1877E-09 w	t.% Ni1Co2O4 t.% Cr1Co2O4		FToxid FToxid)	
	+ 0	gram SiO2_ (1468.09 C, 1	cristobalite(h) atm, S6, a=1.0000)		FToxid	
	+ 0	gram SiO2_ (1468.09 C, 1	tridymite(h) atm, S4, a=0.99999))	FToxid	
	+ 0	gram SiO2_ (1468.09 C, 1	quartz(h) atm, S2, a=0.92034))	FToxid	
	+ 0	gram MgSiO (1468.09 C, 1	3_proto-enstatite atm, S3, a=0.54841))	FToxid	
	+ 0	gram MgSiO (1468.09 C, 1	3_ortho-enstatite atm, S2, a=0.54085))	FToxid	-

Primary crystallization phase is SiO₂ (cristobalite)

Using Macro function, this kind of calculation can be carried out automatically.

Repeat to calculate the liquidus temp of each slag using 'Precipitate Target'

Ferrous Processing 40

McGill CRCT

The effect of SiO_2/MgO and FeO and AI_2O_3 in Slag on the liquidus temperature of the Slag Phase Diagram / Equilib

Ferrous Processing 41

🐯 McGill CRCT

Actually, SiO₂/MgO of Laterite is almost same as that of the produced Slag The main system of Slag is virtually SiO₂-MgO-Al₂O₃-FeO

Q (Compon	ents - P	hase Diagram		-			
File	Edit	Units	Data Search	Help				
Ľ	2	+		Т	(C) P(atm) Er	hergy(J) Mass(g) Vo	l(litre)	111 📑 🕒 📧
	1 - 5				Cor	nponents		
				Г	Al2O3 Fe0 Fe		Note: - on the phase diagram the units of mass will be g, but the chemical formulae of the components remain molar values.	•
				Fe-sa	aturati	on cond	lition	
							Eh -	pH diagram
						Next >>		
Fac	Sage 6.3) Co	ompound: 2	/19 databases	Solution:	2/19 databases		

Ferrous Processing 42

🐯 McGill CRCT

Selection - Equilib - no results -		Soloct pure solid and liquid of						
File Edit Show Sort		Select pure solid and liquid of						
Selected: 41/68 SOLID Duplicates selected.		Fe for Fe-saturation condition						
- no results -		i c ioi i c-saturation condition						
	Maximum 🔺							
18 SiO2(s) FSstel quartz(l) V		: comments						
19 SiO2(s2) FSstel quartz(h) V 20 SiO2(s3) ESstel tridumite(l) V		Variables Help						
21 SiD2(s4) FSstel tridymite(h) V								
22 SiO2(s5) FSstel cristobalite(I) V		T(C) P(atm) Energy(J) Mass(g) Vol(litre) 🛛 👖 🏢 🦳 🐺						
+ 24 Fe(s) F5stel cristobalite(h) V								
+ 25 Fe(s2) FSstel fcc_a1								
26 Fe2O3(s) FSstel hematite V								
27 Fe3U4(s) F5stel magnetite V 28 Fe3U4(s2) F5stel magnetite V		(gram) SiO2 + FeO + MgO + Al2O3 + Fe						
29 Al5Fe2(s) FSstel al5fe2 o								
30 Al61Fe31(s) FSstel al2fe o								
Show Selected Select All Select/Clear Clear Image: Show Selected Image: Selected Image: Selected Image: Selected Image: Selected: 1/10 LIQUID Duplicates selected Image: Selected: 1/10 LIQUID Selected: 1/10 Mage: Selected Image: Selected: 1/10 Selected: 1/10 Selected: 1/10 Selected: 1/10 Image: Selected: 1/10 Selected: 1/10 Selected: 1/10 Selected: 1/10 Image: Selected: 1/10 Selected: 1/10 Selected: 1/10 Selected: 1/10 Image: Selected: 1/10 Selected: 1/10 Selected: 1/10	ок queous ure liquids ure solids	Solution species Solution spe						
+ 8 Fe(liq) FSstel liquid		solutions: 12 Default						
10 Mg0(liq) FToxid liquid								
11 Al2O3(liq) FToxid liquid		Phase Diagram						
12 SiO2(liq) FToxid liquid		Fe0/(Si02+Fe0 Al203/ Fe/(Si02+Fe0 A						
Intervision Nacion Intervision Intervision <t< td=""></t<>								
		sNo4-Si02-Mg0-Al203-Si02-constant_1500C.DAT						

Ferrous Processing 43

McGill CRCT

Variables: SiO2-MgO-Al2O3-FeO-Fe comp	osition #3. vs composition #1.		CALL IN MARK	
✓ariables T and Y • • •	P erature Constant	/olume	ergy(J) Mass(g) Vol(litre)	M 🗩 🖶 🕱
B C C Y steps: 10 Next >>	1500 C V(litre) C log V) + MgO + Al2O3 + Fe	- Custom Solutions
- Compositions (mass) #1. 1 SiO2 + 0 MgO + 0 Al 1 SiO2 + 1 MgO + 1 Al Composition #	$\frac{203 + 0}{100} Fe0 + 0 Fe}{203 + 1} Fe0 + 1 Fe} = \frac{X \cdot axi}{1 (ma)}$	ase ↓G/ N/ ×)	e Full Name A ASlag-liq all oxides + S A ASpinel A AMonoxide A AMonoxide A AClinopyroxene Orthopyroxene Orthopyroxene A AProtopyroxene A AOlivine Mullite ▼	0 fixed activities 0 ideal solutions 0 activity coefficients Details Pseudonyms apply List include molar volumes <u>Total Species (max 1500)</u> 178 <u>Total Solutions (max 40)</u> 12
Canc		OK	species: 136 solutions: 12	Default
	- Variables		PI	hase Diagram
	T(C) Si02/(Si02+Fe0) 1500 [0 1]	Fe0/(Si02+Fe0 Al20 01 0	03/ Fe/(Si02+Fe0 0 0.000001 B 4	Âc
	A = SiO2, B = MgO, C = FeO FactSage 6.3	sNo4-SiO2-Ma0-Al2O3-SiO2-	-constant 1500C.DAT	Calculate >>
	2	-		11

Ferrous Processing 44

McGill CRCT

Variables: SiO2-FeO-MgO-Al2O3-Fe composition #1. vs composition #1.	×
Variables YCompositionsImage: Composition for the second seco	Ternary phase diagram of FeO-MgO-SiO ₂ at constant Al ₂ O ₃ with Fe-saturation
-Compositions (mass) 1 SiD2 + O FeO + O MgO + O Al2O3 + O Fe \sim	Variables: SiO2-MgO-Al2O3-FeO-Fe composition #3. vs composition #1.
#1. 1 SiO2 + 1 FeO + 1 MgO + 0 Al2O3 + 0 Fe Composition # #1 * max = 5 Cancel	Variables Compositions 4 Y • compositions 4 A Iog10(a) ▼ 0 B C Y steps: 10 Next >>
	- Compositions (mass)
	#4. U SiO2 + U MgO + U Al2O3 + U FeO + 1 Fe I constant ✓ 1 SiO2 + 1 MgO + 1 Al2O3 + 1 FeO + 1 Fe =
Add small	Composition # #4 _ max = 4
	Cancel

Ferrous Processing 45

The second secon

Ferrous Processing 46

McGill CRCT

Montreal

Variables:SiO2-FeO-MgO-Al2O3-FeT(C) vs comVariables YcompositionsTand PY \bigcirc Ccompositions \blacksquare TemperatureA B \bigcirc C \bigcirc T(C) \bigcirc T(C) \bigcirc T(T)Ysteps: $\boxed{11}$ Next >>	Y-axis Y-axis Max: 2000 Min: 1000 C log P C log V	With change 0 to 8 wt% of Al ₂ O ₃ at constant SiO ₂ /MgO=1 under Fe-saturation
Compositions (mass) #1 SiO2 + 0 FeO + 1 MgO + 1 SiO2 + 1 FeO + 1 MgO + Composition # #1 max = 4	0 AI203 + 0 Fe = constant 1 AI203 + 1 Fe 0	ature Pressure or Volume Y-axis P(atm) constant Max: 2000 Min: 1000 V(litre) 1 C log V
Cancel	OK #3. 1 SiO2 + 1 FeO + 1 M Composition # #3 1 max =	+ 100 Al203 + 0 Fe constant g0 + 1 Al203 + 1 Fe 5 4
Fact Sage [™]	Ferrous Processing 47	Wontrea

Ferrous Processing 48

WCGill CRCT Montreal 2013

Show the liquidus temperature of the alloy as a function of Fe-Ni grades

Precipitate target / Phase diagram

Ferrous Processing 49

🐯 McGill CRCT

The alloy mainly contains Fe and Ni with small amounts of Co or Cr Virtually, it is a binary Fe-Ni system

Q I	Reactant	ts - Equ	ilib						
<u>F</u> ile	<u>E</u> dit	<u>T</u> able	<u>U</u> nits	<u>D</u> ata Search	<u>H</u> elp				
	2	+			T(C) P(atm) Energy(J) Mass(g) V	/ol(litre)		ll 📑 🕒 📧
	1 - 2								1
	_	Ma	nss(g)		Species	Phase	T(C)	P(total)**	Stream# Data
	<1	00-A>		Fe					1
	* <a< td=""><td>></td><td></td><td>Ni</td><td></td><td></td><td><u> </u></td><td></td><td>1</td></a<>	>		Ni			<u> </u>		1
									Initial Conditions
ي ا									
						Next >>			
Fac	Sage 6.3	3 C	ompound	: 3/19 datab	ases Solutio	on: 2/19 databases			11

Ferrous Processing 50

🐯 McGill CRCT

Iontreal

存 Menu - Equilib: NO5-Liquidus c	of Fe-Ni	
File Units Parameters Help	T(C) P(stm) Energy(I) Mass(a))(allitra)	
Beactants (2)	r(c) r(aunij Energy(d) Massigji Voljuce)	
	(gram) <100-A> Fe + <a> Ni	
Products		
Compound species + gas • ideal C real 2 aqueous 0 pure liquids 0 + pure solids 6	Solution species * Base-Phase P FSstel-LIQU + FSstel-FCC1 + FSstel-FCC1 + FSstel-BCC1 BCC_A2	Custom Solutions 0 fixed activities 0 ideal solutions 0 activity coefficients Details
suppress duplicates apply species: 8		Pseudonyms apply List
Precipitate Target FSstel-LIQU Estimate T(C): 1000 Mass(g): 0	Legend Image: Constraint of the selected P - precipitate target + - selected Show O all ● selected + - selected 2 species: 6 solutions: 3 Select	<u>Total Species (max 1500)</u> 14 <u>Total Solutions (max 40)</u> 3 Default
Final Conditions <a> 0 50 1 10 steps	T(C) P(atm)	quilibrium normal C normal + transitions transitions only open Calculate >>
FactSage 6.3 C:\FactS	age\EquiNO5-Liquidus_of_Fe-Ni.DAT	

Ferrous Processing 51

McGill CRCT

Results - Equilib 1537.81 C, A=0 (page 1/51)										
Output Edit Show Pages										
Save or Print T(C) P(atm) Energy(J) Mass	(g) Vol(litre)	111 🖳	🕒 😿							
Plot Plot Results										
Equilib Results file Repeat Plot - T(C) vs Alpha Stream File 1000.72 C, A=14 1498.08 C, A=1 Format 512.78 C, A=8 1510.81 C, A=9 15 0.86 C, A=2 1527.08 C, A=3 1522	52 C, A= 52 C, A= 53 C, A= 54 C, A= 54 C, A= 55 C,	22 1482.54 C, A=23 essor: C:\FactSage\Equi0.	res	×						
Fact-XML	_	<100-A>Fe+ <a>	Ni	<u> </u>						
i =	Axes	Variables	Minimum	Maximum						
Fact-Optimal		activity	0	1.						
a1		mole	0	1.7907						
Fact-Function-Builder ▶ n, a=3.6413E-05)		mole fract.	0	1.						
Fe		gram	0	100.						
Kefresh		weight %	0	100.						
(100 gram 1 7907 mol)		Alpha	0	50.						
(1537.81 C, 1 atm, a=1.0000)		T(C)	1445.9	1537.8						
(100.00 wt.% Fe		P(atm)	1.	1.						
		Cp(J)	75.575	82.369						
System component Mole fraction Mass	fi	G(J)	-1.9775E+05	-1.9378E+05						
Fe 1.0000 1.	00(Vol(litre)	0	0						
+ 0 gram BCC 33		H(J)	1.0825E+05	1.2976E+05						
(1537 81 C 1 atm a=1 0000)		V(litre)	0	0						
(100.00 wt.% Fe1Va3		S(J)	176.13	180.43						
		- page -	1.	51.						
+ 0 gram FCC_A1 (1537.81 C. 1 atm. a=0.99446)	Axes	Species	- Graph	alau						
(100.00 wt.% FelVa1 + 0 gram Fe_bcc_a2 (1537.81 C, 1 atm, S1, a=1.0000)	0 selected Axes	O selected Select Repeat	Labels size: 9 no: 4 chemical integer # O none	color full screen reactants O Viewer file name © Figure						
	FactSage 6.3	C:\FactSage\Equi0.res		5Feb13 51 sets						

Ferrous Processing 52

McGill CRCT

	Show	Select												
۰T	#	Species	Mole (min)	Mole (max)	Fraction (min)	Fraction (max)	Acti	vity (min)	Activity (max)					
6	ias	<u>Phase</u>												
	1	Fe(g)	0	0	0.751736	1.	4.547	71E-06	3.6413E-05					
	2	Ni(a)	0	0	0	0.248264	0		1.5017E-06					
F	Sstel-	<u>LIQU</u>												
1	3	Fe(LIQU)	0.895335	1.7907	0.512434	1.	0.473	824	1.					
Ŀ	4	Ni(LIQU)	0	0.851885	0	0.487566	0		0.398546					
Ľ	5stel-	<u>FLLI</u>						•						
!	5	Fe1Va1(FCC1)	0	0	0.518534	1.	-A	Results Pro	cessor: C·\FactSa		ui0 res			Σ
	6	Ni1Va1(FCC1)	0	0	0	0.481466	_	nesones i re	cesson en actou	90,00	aioires			
ŀ	<u>-Sstel-</u>	BCC1			0.500000		<u> </u>	e <u>H</u> elp						
	/ D	FerVa3(BCCT)	0	0	0.598803	1.			2100-65	Fe +	ZAN Ni		_	
	5)	NITVA3(BCCT)	U	U	U	0.401197	-		R100A/	101	V-2 10			
	rure	<u>50lids</u> Eo(a)	0	0	0	0		Axes	Variables		A I	linimum		Maximum
	5 10	Fe(s) Fe(s2)	0	0	0	0			activ	ity		0		1.
	11	re(sz) Ni(e)	0	0	0	0				la		0		1 7907
	12	Fe(s)	0	0	0	0			Axes: T(C)	vs A	lpha			
	13	Fe(s2)	0 0	n	ñ	ů.				, .				
		()	-		-	-			Y-variable X	-varia	able Swap Ax	es		
				Mas	-Order									
					nole 🤄 integr	er# Sel	вс					-X-axis		1.8
				[[page]] O d	iram C mass	(max)				T(C)		4	Alpha	
	Class	. 1			C fractio	on (max)	-							69
	Liea			51 pages	 activi 	ty (max) 56			maximum	154	0	maximum	50	BE+05
lic	k on the	+' column to add o	r remove species.						minimum	144	5	minimum	Ο	
_											<u> </u>			6E+05
									tick every	5		tick every	5	
									1					43
											[
										1	D (. 1	(
							- 4	Axes	Lancel		Hefre	sh		
								0 selected		_				
									Seler	-+	size:	9 no: 4	reactants	O Viewer
										~	l 🔍 🤆 cł	emical	🔽 file name	Figure
									_		_ C in	eger #		
								Axes	Repe	at	C no	ne	PI	ot >>
										-				

Ferrous Processing 53

McGill CRCT

Ferrous Processing 54

McGill CRCT

Montreal

The effect of Fe-Ni grades on the concentration of Co and Cr in the liquid alloy Equilib Calculation

Ferrous Processing 55

McGill CRCT

🕞 Reactants - E	quilib										
File Edit Tab	le Units D)ata Search Help									
🗅 🚔 +		T(C) P(atm) Energy(J) Mass(g) Vol(litre)		 	🦻 🖪				
	1.10 11.14										
1.10 11.	14						1				
	Mass(n)	Snecie	s Phase	T(C)	P(total)**	Stream#	Data				
8,1	(9)	FeO	solid-FactPS wustite	▼ 500	1	1	FactPS				
+ 20,9		Fe203	solid-1-FToxid hematit	▼ 500	1	1	FToxid				
+ 43.8		Si02	solid-1-FToxid quartz(I	▼ 500	1	1	FToxid				
+ 6.4		AI203	solid-4-FToxid corund	▼ 500	1	1	FToxid				
+ 16.8		MgO	solid-FT oxid periclase	▼ 500	1	1	FToxid				
+ 2.3		NiO	solid-FT oxid	▼ 500	1	1	FToxid				
+ <4.8A>		AI203	solid-4-FToxid corund	▼ 100	1	2	FToxid				
+ <14A>		Si02	solid-1-FToxid quartz(l	▼ 100	1	2	FToxid				
+ <81.2A>		C	solid-1-FactPS graphit	▼ 100	1	2	FactPS				
+ 0.1		CaO	solid-FT oxid lime	▼ 500	1	1	FToxid				
					•	Initial Condit	ions				
			Next >>								
FactSage 6.3	Compound:	3/19 databases	Solution: 2/19 databases								

Ferrous Processing 56

McGill CRCT

Menu - Equilib: change of Ni w	ith adding Char										
File Units Parameters Help											
🗅 🚘 🔚 T(C) P(atm) Energy(J) Mass(g) Vol(litre) 👖 📑 📑 🖏											
Reactants (14) (gram) 8.1 FeO + 20.9 (500C,s-FactPS,#1) (500C,s	Fe2O3 + 43.8 SiO2 -FToxid,#1) (500C,s1-FToxi	2 + 6.4 Al2O3 d,#1) (500C,s4-FToxid,#1	+ 16.8 MgO +) (500C,s-FToxid,#1) (50								
Products Compound species	┌─ Solution species		Custom Solutions								
* ∓ gas ⊙ideal ⊖ real 51	· Base-Phase	Full Name 🔺	0 fixed activities								
aqueous 0	+ FSstel-LIQU		0 ideal solutions								
pure liquids 0	+ FSstel-FCC1	FCC_A1	U activity coefficients								
★ + pure solids 116	+ FSstel-BCC1	BCC_A2	Details								
suppress duplicates apply	I FToxid-SLAGA	ASlag-liq all oxides + S	Desudences								
* - custom selection	I FT oxid-SPINA	ASpinel	- Fseudonyms								
species: 167	I FToxid-MeO_A	AMonoxide	apply List								
	+ FToxid-cPyrA	AClinopyroxene	🗖 inaluda malar yakumaa								
	+ FToxid-oPyr	Orthopyroxene									
- Target	Legend I - immiscible 4	Show C all 💿 selected	Total Species (max 1500) 584 Total Solutions (max 40) 16								
Estimate ALPHA: 1 Mass(g): 0	+-selected 8	species: 417 solutions: 16 Select	Default								
- Final Conditions			auilibrium								
(A) T(C) P(atm) ▼ Delta H(I) ▼ Onormal C normal + transition											
0.0.1.0.005	1600 1		transitions only								
10 steps Table	11000	21 calculations	open Calculate >>								
FactSage 6.3 C:\\E(uiNo6-Fe-Ni_effect_on_Co_and_C	Cr_composition.DAT									

With change of Char, Fe-Ni grade will be changed. The effect of Fe-Ni grades on the solubility of Co and Cr can be calculated with change of Char.

🐯 McGill CRCT

Montreal

2013

Ferrous Processing 57

GactSage[™]

Ferrous Processing 58

WCGill CRCT

Montreal

) S	Species Selection - EQUILIB Results: weight % vs Alpha									
File	Show	Select								
+	#	Species	Gram (min)	Gram (max)	₩t.%	(min)	₩t.% (max)	Activity (min)	Activity (max)	▲
	53	C(LIQU)	0	0.172327	0		0.697922	0	7.3983E-04	
+	54	Co(LIQU)	0	7.8630E-02	0.21442	1	1.4707	1.2119E-06	1.3862E-02	
+	55	Cr(LIQU)	0	0.384669	3.4297E-05		1.5579	7.7175E-11	1.3032E-02	
	56	AI(LIQU)	0	5.1829E-05	2.3078E	Pocult	×			
	57	Mn(LIQU)	0	3.8302E-02	4.7114E	Result	S Processor: C:\raci	sage (Equivires	100 C 100	
+	58	Ni(LIQU)	0	1.8073	7.3194	File He	lp			
	59	SI(LIQU)	0	1.4944	1.37518		81 F	eO + 209Fe2O3+ 4	13 8 SiO2 + 6 4 Al2O3	+
	60	Mg(LIQU)	0	9.3987E-07	6.51858					
	61		0	9.6386E-03	4.27198	Axes	Variabl	es	Minimum	Maximum
	62	Alo(LIQU)	0	1.6660E-06	3.13116		a	stivity	0	104.58
	63	AI2O(LIQU)	0	1.4529E-09	2.60096			mole	0	2.5887
	64		0	3.5027E-04	3 47328	I	mole	fract.		0.999983
	65	Cr20(LIQU)	0	2.0450E-05	1 84176			gram	U	99.429
	66	MpO(LIQU)	0	1.57965-06	3 73685		Wei	gnt %	0	99.998
	67	SID(LIDLI)	0	3 5940E-04	7 59828	I	/	T(C) 1600		100
	07 CO	MaQ(LIQU)	0	2 2204E 05	C 00500			(ctm)	1000.	1600.
	CQ		0	1.01025.12	2 50070		Delta	(aun) Co(l)	19.62	82.696
	70		0	0.00045.10	2.03076		Delta		-3 8924F+05	-2 7358E±05
	70		U	8.9324E-10	2.28906		Vo	l(litre)	0.0024E+00	-2.73302403
							Delta	a H(J)	1.7769E+05	3.1154E+05
					s –		Delta	Vílitr	3.702	101.96
		C mole				Delta S(J)		a S(J)	152.43	277.68
				🗆 [page] 🛛 💽 gr	am		- P	age -	1.	21.
	Clea	r		21 pages		Axes	Specie	sGra	aph	ieplau
	E-1		· · · · ·		_	0 sel	ected 0 se	elected	abels	oplor full soroon
	lick on the	e + column to add or	remove species.					si	ze: 9 no: 4	reactants O Viewer
							Se	elect	chemical	file name . • Figure
									integer #	nie nanie i s rigore
						A:	Kes Select species a	nd phases to be pla	tted B	Plot >>
							Select species a	na phases to be plo	tted.	
					I	FactSage	6.3 C:\FactSag	e\Equi0.res		6Feb13 21 sets

Ferrous Processing 59

Ferrous Processing 60

McGill CRCT Montreal 2013

Blow-up Scale of the solubility of Co and Cr with change of Char and Fe-Ni grade.

🐯 McGill CRCT

Montreal

2013

Ferrous Processing 61